

Searches for rare Higgs boson decays at CMS

ICHEP 2024, Prague - 18 July, 2024

Rocco Ardino ^{1,2,3} for the CMS Collaboration

¹ Università degli studi di Padova

² INFN, Sezione di Padova

³ CERN, Geneva, Switzerland

Motivation and content of this talk

Figure: Higgs to fermions/gauge bosons coupling modifiers, as a function of the fermion/gauge boson mass [Nature 607 (2022) 60-68]

CMS and ATLAS measurements of couplings to Higgs

- Couplings to 3rd generation of fermions measured and consistent with SM
- Focus on couplings to 2nd generation
- Discrepancies? ⇒ Hint to Physics Beyond the SM and info on mechanism behind fermion masses hierarchy

CMS experiment searches with Run-2 data set

- H→µµ [JHEP 01 (2021) 148]
- H→Zγ [JHEP 05 (2023) 233, PRL 132 021803]
- <mark>Η→ργ, φγ, Κ*⁰γ</mark> [<u>PAS-HIG-23-005</u>]
- H→J/ψγ, ψ(2S)γ [PAS-SMP-22-012]
- H→ZJ/ψ, J/ψJ/ψ, YY [<u>PLB 842 (2023) 137534</u>]
- H→Zρ, Zφ [<u>JHEP 11 (2020) 039</u>]

Higgs boson decay to a pair of muons

H decay to µµ [JHEP 01 (2021) 148]

Sensitive to Yukawa coupling to muons
 Br(H→µµ) = 2.18 × 10⁻⁴ (± 1.7%)

- Trigger: single muon
- Categorization based on Higgs production mode

CMS search for $H \rightarrow \mu \mu$ using Run-2 data (137 fb⁻¹)

• Most sensitive channels: ggH, VBF

Measurement from combination of categories

- First evidence (3.0σ)
- $\mu = 1.19_{-0.42}^{+0.44}$
- 0.85 < κ_μ < 1.29

Figure: VBF candidate event display (top), $m_{\mu\mu}$ distribution for the weighted combination of all event categories (bottom-left) and 95% CL upper limits on μ (bottom-right)

Higgs boson decay to a Z and a photon

H decay to Zγ [JHEP 05 (2023) 233, PRL 132 021803]

Loop induced process \Rightarrow New physics in loops?

- Br(H \rightarrow Z γ) = (1.57 ± 0.09) × 10⁻³
- Br(Z→ee, µµ) ~ 6.8 × 10⁻²
- Final state: photon + pair of leptons (ee, $\mu\mu$)

CMS search performed with Run-2 data (138 fb⁻¹)

- Trigger: dielectron / dimuon
- Backgrounds: Drell Yan with ISR y or jets
- Signal: narrow peak in $m_{\ell\ell\nu}$ around H mass
- 8 mutually exclusive categories
 - Lepton tag: presence of additional leptons 0
 - Dijet events (VBF): MVA discriminant D_{VBE} Ο
 - Untagged (ggH): MVA discriminant D_{kin} for m_{fly} Ο system

Figure: D_{VRE} (left) and D_{kin} (right) distributions for signal, simulated background, and data

0.6 0.7 0.8 0.9

H decay to Zγ [PRL 132 021803]

- Evidence: significance of 3.4 std dev from combination with ATLAS!
- $\mu = 2.2 \pm 0.7$ (observed)
- Br(H \rightarrow Z γ) = (3.4 ± 1.1) × 10⁻³ (1.9 std dev within SM prediction)
- Dedicated poster by Yu-Hsuan Chou with more details <u>here</u>!

Figure: Zy invariant mass distribution of from CMS+ATLAS data combination

Figure: Negative profile log-likelihood scan of the signal strength modifier

7

Higgs boson decays to light mesons and a photon

H decay to ρ , ϕ or K^{*0} and a photon [PAS-HIG-23-005]

Figure: Leading-Order diagrams for $H{\rightarrow}\phi/K^*_{\ 0}$ + γ processes, with direct and indirect contributions

Direct and indirect processes predicted by SM

- Sensitive to Yukawa couplings of H to 1st/2nd generation quarks
 - \circ $\rho\gamma$: Info on coupling to u and d
 - \circ $\phi\gamma$: Info on coupling to s
 - $\circ~~K^{\star0}\gamma:~flavour~violating~couplings~of~s~and~d$
- SM predicted Br [JHEP 08 (2015) 012]
 - Br(H→ργ) = (1.68 ± 0.08) × 10^{-5}
 - \circ Br(H→φγ) = (2.31 ± 0.11) × **10**⁻⁶
 - $\circ \qquad \text{Br(H}{\rightarrow}\text{K}^{*0}\text{\gamma}\text{)} \sim 1.0 \times 10^{\text{-19}} \text{ (suppressed)}$
- Subsequent decays of the light meson
 - $\circ \qquad \rho {\rightarrow} \pi^{+} \pi^{-} \text{ (Br ~ 100\%)}$
 - $\phi \rightarrow K^+K^-$ (Br ~ 49%)
 - \circ K*⁰ \rightarrow K[±] π [∓] (Br ~ 100%)

$H \rightarrow \rho/\phi/K^{*0} + \gamma$: overview

Triggering on these processes is fundamental and challenging

- CMS Run-2 analysis targeting different Higgs production
 - VH: lepton triggers (138 fb⁻¹)
 - VBF: single photon ($E_T > 75 \text{ GeV}$) + a VBF jet pair (86.9 fb⁻¹)
 - \circ ggF: single photon (E_T > 35 GeV) + τ-like jet (p_T > 35 GeV) with two tracks (39.5 fb⁻¹)
- Meson candidate reconstruction from tracks with kinematic vertex-constrained fit
- MVA classifier to improve signal selection
 - \circ Discriminate from $\gamma+jet$ and multijet backgrounds for ggF and VBF
 - Split in two sub-categories of different purity (cat0/1) depending on MVA score threshold
- Combine photon to meson candidate and perform fit on final state invariant mass distribution

Figure: m_{ϕ_V} invariant mass distributions for $H \rightarrow \phi \gamma$ (cat0, ggH)

135 140

10

110 115

Data-Bkg

$H \rightarrow \rho/\phi/K^{*0} + \gamma$: upper limit results

Upper limits on branching fraction set at 95% CL

- No significant excess/discrepancy found w.r.t. SM prediction
- Most stringent experimental limits to date on the $\rho\gamma$ and $\varphi\gamma$ decay channels
- Dedicated trigger for ggF category deployed in 2018, thus expected significant improvement from Run-3 data set

	U.L. $\mathcal{B}(H)$	$(ightarrow ho^0\gamma)$	U.L. $\mathcal{B}(H)$	$\mathbf{H} o \phi \gamma$)	U.L. $\mathcal{B}(H)$	$ ightarrow \mathrm{K}^{*0}\gamma)$
category	$Exp.(10^{-4})$	$Obs.(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$
VH	$62.3^{+25.6}_{-17.9}$	73.7	$37.3^{+16.9}_{-11.3}$	45.0	$25.3^{+11.4}_{-7.3}$	48.5
low- $p_{\rm T}^{\gamma}$ VBF	$49.6\substack{+22.5 \\ -15.0}$	35.6	$33.1^{+18.7}_{-11.5}$	27.9	$18.8\substack{+8.90 \\ -5.7}$	12.3
high- p_{T}^{γ} VBF	$22.9\substack{+10.5 \\ -6.9}$	16.0	$16.0\substack{+9.0\\-5.5}$	10.7	$9.13\substack{+4.25 \\ -2.75}$	6.66
ggH	$6.01\substack{+2.53 \\ -1.72}$	4.37	$3.08\substack{+1.33 \\ -0.98}$	3.46	$2.20\substack{+0.94 \\ -0.62}$	1.93
combined	$5.71^{+2.37}_{-1.63}$	3.74	$2.88\substack{+1.33 \\ -0.83}$	2.97	$2.10\substack{+0.90 \\ -0.58}$	1.71

Figure: Upper limits summary plots

Higgs boson decays to heavy mesons and a photon

H decay to J/ ψ or ψ ' and a photon [PAS-SMP-22-012]

Direct and indirect processes predicted by SM

- Sensitive to Yukawa coupling of H to charm
- Departures from SM \Rightarrow Anomalous coupling, BSM physics
- Similar Z decay likely to be observed before H decay ⇒ benchmark for theoretical prediction method
- SM branching fractions (J/ $\psi \equiv \psi(1S)$, $\psi' \equiv \psi(2S)$) [PRD 100 054038]
 - Br(H→ψ(1S)γ) = (2.99 ± 0.15) × 10^{-6}
 - Br(H→ψ(2S)γ) = $(1.03 \pm 0.06) \times 10^{-6}$
 - Br(Z→ ψ (1S)γ) = (8.96 ± 1.51) × **10**⁻⁸
 - Br(Z→ψ(2S)γ) = (4.83 ± 1.02) × 10^{-8}
- Consider subsequent meson decays
 - $\circ \qquad \psi(1S){\rightarrow}\mu^+\mu^{\scriptscriptstyle -} \ (Br \sim 5.9\%)$
 - $\circ \qquad \psi(2S){\rightarrow}\mu^+\mu^- \text{ (Br ~ 0.8\%)}$
- $\mu\mu\gamma$ final state \Rightarrow Very clean, low/reducible SM backgrounds

Figure: Leading-Order diagrams for Z,H $\rightarrow \psi(nS)\gamma$ processes, with direct and indirect contributions

$Z,H{\rightarrow}\psi(nS)\gamma: overview$

Analysis performed using CMS Run-2 data set (123 fb⁻¹)

- Signal: two resonances (Z/H and ψ (nS) meson)
- Backgrounds: QCD multijet, $H/Z \rightarrow \mu\mu\gamma$
- Trigger: single muon + photon
- Meson candidate: μ pair closest in ΔR , compatible m_{uu}
- Control Region (CR): inversion of m_{uu} window cut

Categorization

- $Z \rightarrow \psi(1S)\gamma \Rightarrow$ Angular Likelihood Discriminator
 - Based on main angular variables \Rightarrow Low/High Purity
- $H \rightarrow \psi(1S)\gamma \Rightarrow H$ production mode
 - VBF (2 forward jet), Heavy Flavour (b-tag jet, ttH+bbH)
 - Inclusive (ggH), High/Low Purity based on angular vars

Combine photon to meson candidate and perform fit on final state invariant mass distribution

Figure: $H \rightarrow \psi(1S)\gamma$, ggF HP category

$Z,H \rightarrow \psi(nS)\gamma$: upper limit results

Process	This analysis (123 fb $^{-1}$)				
1100055	$\mu_{obs}(\mu_{exp})$	$\sigma_{obs}(\sigma_{exp})[\mathrm{pb}]$	$\mathcal{B}_{obs}(\mathcal{B}_{exp})$		
$Z \to \Psi(1S)\gamma$	$7.2 \ \left(8.6^{+4.1}_{-2.7}\right)$	$3.8~\left(4.4^{+1.9}_{-1.3} ight) imes 10^{-2}$	$0.6~(0.7^{+0.3}_{-0.2}) imes 10^{-6}$		
$Z \to \Psi(2S)\gamma$	29 (68^{+36}_{-22})	$8~(19^{+8}_{-6}) imes 10^{-2}$	$1.3~\left(3.1^{+1.4}_{-0.9} ight) imes 10^{-6}$		
${\rm H} \rightarrow \Psi(1S) \gamma$	$88~(62^{+30}_{-19})$	$1.4~(1.0^{+0.5}_{-0.3}) imes 10^{-2}$	$2.6~(1.8^{+0.9}_{-0.6}) imes 10^{-4}$		
$H \to \Psi(2S) \gamma$	970 $\left(781^{+417}_{-259}\right)$	5.5 $(4.4^{+2.3}_{-1.5}) \times 10^{-2}$	9.9 $\left(8.0^{+4.2}_{-2.6}\right) \times 10^{-4}$		

Upper limits on branching fraction set at 95% CL

- No significant excess/discrepancy found with respect to SM prediction
- 2.2 σ downward fluctuation for Z $\rightarrow \psi(2S)\gamma$
- Most stringent experimental limits to date on $Z \rightarrow \psi(nS)\gamma$ and $H \rightarrow \psi(2S)\gamma$
- Constraints on $Z \rightarrow \mu\mu\gamma$ from Control Region $\mu(Z \rightarrow \mu\mu\gamma) = \sigma / \sigma^{SM} = 1.18 \pm 0.12$
- Interpretation of results in κ -framework provides constraints on κ_c / κ_γ at 95% CL $\kappa_c / \kappa_\gamma \in (-157, +199)$ (observed) $\kappa_c / \kappa_\gamma \in (-121, +161)$ (expected)

Dedicated poster with more details <u>here</u>!

Conclusions

Higgs rare decays searches at CMS

- Probe unobserved H couplings and search for discrepancies with SM (e.g. loop contributions)
- Upper limits on branching fraction at 95% CL
- No significant excess/discrepancy (for now!)

Probes presented today, searched by CMS with Run-2 data set

- ▶ <mark>Η→μμ</mark> [<u>JHEP 01 (2021) 148</u>]
 - Evidence of 3.0 std dev, compatible with SM
- H→Zγ [JHEP 05 (2023) 233, PRL 132 021803]
 - Evidence of 3.4 std dev, compatible with SM
- <mark>Η→ρ/φ/Κ*⁰ + γ</mark> [<u>PAS-HIG-23-005]</u>
 - \circ probe coupling to u,d,s quarks
- H (and Z)→ψ(nS)γ [PAS-SMP-22-012]
 - \circ Probing coupling to c quark
 - Significantly improved previous CMS analysis

Summary of most recent results

Search	Code and reference	Results	Comments	
$H \rightarrow \mu \mu$	JHEP 01 (2021) 148		Evidence of 3.0 std dev significance	
$H\to Z\gamma$	Phys. Rev. Lett. 132 (2024) 021803	$\mathcal{B} = (3.4 \pm 1.1) \cdot 10^{-3}$ $\mu = 2.2 \pm 0.7$	1.9 std dev within SM prediction Evidence of 3.4 std dev significance	
$\label{eq:holestress} \begin{array}{l} H \rightarrow \rho^0 \gamma \\ H \rightarrow \varphi \gamma \\ H \rightarrow K^{*0} \gamma \end{array}$	CMS-PAS-HIG-23-005	$\begin{split} \mathcal{B} &= 3.74 \; (5.71^{+2.37}_{-1.63}) \times 10^{-4} \\ \mathcal{B} &= 2.97 \; (2.88^{+1.33}_{-0.83}) \times 10^{-4} \\ \mathcal{B} &= 1.71 \; (2.10^{+0.90}_{-0.58}) \times 10^{-4} \end{split}$		
$\begin{array}{c} H \rightarrow Z\rho \\ H \rightarrow Z\varphi \end{array}$	JHEP 11 (2020) 039	$\mathcal{B} = 1.04 - 1.31\%$ (0.63-0.80%) $\mathcal{B} = 0.31 - 0.40\%$ (0.27-0.36%)	740–940 times the SM expectation 730–950 times the SM expectation	
$H \rightarrow \psi(1S)\gamma$ $H \rightarrow \psi(2S)\gamma$	CMS-PAS-SMP-22-012	$\begin{aligned} \mathcal{B} &= 2.6 \; (1.8^{+0.9}_{-0.6}) \times 10^{-4} \\ \mathcal{B} &= 9.9 \; (8.0^{+4.2}_{-2.6}) \times 10^{-4} \end{aligned}$	88 (62) times the SM prediction 970 (781) times the SM prediction	
$\begin{split} H &\rightarrow ZJ/\psi \\ H &\rightarrow Z\psi(2S) \\ H &\rightarrow J/\psi J/\psi \\ H &\rightarrow \psi(2S) J/\psi \\ H &\rightarrow \psi(2S)\psi(2S) \\ H &\rightarrow \Upsilon(nS)\Upsilon(mS) \\ H &\rightarrow \Upsilon(1S)\Upsilon(1S) \end{split}$	Phys. Lett. B 842 (2023) 137534	$\begin{aligned} \mathcal{B} &= 1.9 \; (2.6^{+1.1}_{-0.7}) \times 10^{-3} \\ \mathcal{B} &= 6.6 \; (7.1^{+2.8}_{-2.0}) \times 10^{-3} \\ \mathcal{B} &= 3.8 \; (4.6^{+2.0}_{-0.6}) \times 10^{-4} \\ \mathcal{B} &= 2.1 \; (1.4^{+0.6}_{-0.4}) \times 10^{-3} \\ \mathcal{B} &= 3.0 \; (3.3^{+1.5}_{-0.9}) \times 10^{-3} \\ \mathcal{B} &= 3.5 \; (3.6^{+0.2}_{-0.3}) \times 10^{-4} \\ \mathcal{B} &= 1.7 \; (1.7^{+0.1}_{-0.1}) \times 10^{-3} \end{aligned}$	826 times the SM prediction 5.8 times earlier SM predictions	

Backup slides

$H \rightarrow \rho/\phi/K^{*0} + \gamma$: overview

Triggering on these processes is fundamental and challenging

- CMS Run-2 analysis targeting different Higgs production
 - VH: lepton triggers (138 fb⁻¹)
 - VBF: single photon ($E_T > 75$ GeV) + a VBF jet pair (86.9 fb⁻¹)
 - \circ ggF: single photon (E_T > 35 GeV) + τ-like jet (p_T > 35 GeV) with two tracks (39.5 fb⁻¹)
- Meson candidate reconstruction
 - Tracks from PV and satisfying "high-purity" reco requirements
 - Meson decay vertex determined with a kinematic vertex-constrained fit and track momenta recalculated accordingly
 - Assume K/ π mass in m_{2trk} invariant mass calculation
 - Dedicated isolation of the candidate from particle-flow momenta

• MVA classifier to improve signal selection

- \circ $\;$ Discriminate from $\gamma + jet$ and multijet backgrounds for ggF and VBF categories
- m_{2trk} sideband region for MVA training (ggF) or validation (VBF)
- Split in two sub-categories of different purity (cat0/1) depending on MVA score threshold

Figure: $m_{_{TRT}}$ (top) and $m_{_{KK}}$ (bottom) invariant mass distributions for $H{\to}\rho/\varphi$ + γ searches by CMS experiment

$H \rightarrow \rho/\phi/K^{*0} + \gamma$: event modelling

Combine photon to meson candidate and perform fit on final state invariant mass distribution

- Background parameterization using Chebyshev/Bernstein polynomials and Exponentials
- Use discrete profiling method to handle systematic uncertainty from the choice of the bkg model
- Signals modelled using Double-Sided Crystal Ball

$Z,H{\rightarrow}\psi(nS)\gamma:overview$

Analysis performed using CMS Run-2 data set (123 fb⁻¹) and looking for $\mu\mu\gamma$ final state

- Excellent reconstruction performance of the final state particles
- Signal expected to appear with two resonances (Z/H and ψ (nS) meson)
- Main background: QCD multijet with and without a $\psi(nS)$ meson
- Resonant backgrounds: $Z \rightarrow \mu \mu \gamma$ Final State Radiation (FSR) and $H \rightarrow \mu \mu \gamma$ "Dalitz" decays
- Strategy: reconstruct the invariant mass distributions $m_{\mu\mu}$ and $m_{\mu\mu\gamma}$, where the signal is expected to peak unlike the SM backgrounds

Event selection

- "Single muon + photon" trigger with p_{T} threshold of 17 (30) GeV on the muon (photon)
- Muons: p_T(µ₁) > 18 GeV, p_T(µ₂) > 18 GeV, "medium prompt" identification and tight isolation from hadronic activity
- Photon: $p_T(\gamma) > 32$ GeV, multivariate identification at 80% efficiency + pixel seed veto
- $\psi(nS)$ candidate as the one with pair of OS muons with closest angular distance ΔR
- Signal regions: $m_{\mu\mu} \in [3.0, 3.2] \text{ GeV (SR1)}, m_{\mu\mu} \in [3.6, 3.75] \text{ GeV (SR2)}$
- Control Region (CR): inversion of $m_{\mu\mu}$ window cut

$Z,H{\rightarrow}\psi(1S)\gamma: categorization$

Likelihood Discriminator (LD) for $Z \rightarrow \psi(1S) + \gamma$ search

- Built using main angular variables of process
 - \circ cos θ^* : cos of angle $\psi(nS)$ -z in H/Z rest frame
 - \circ cos θ₁: cos of angle μ⁺-ψ(nS) in ψ(nS) rest frame
 - $\circ ~~\phi_1$: angle between the normals of $\mu^+\mu^-$ and γz planes
- Train LD on Control Region data to discriminate main QCD background from signal
- "Low Purity" (LP) category: LD < 0.5
- "High Purity" (HP) category: LD > 0.5

Categorization for $H \rightarrow \psi(1S) + \gamma$ search based on H production mode

- VBF: require at least two jets in the forward region with m_{ii} > 350 GeV
- Heavy Flavour (HF): targeting ttH and bbH, requiring at least 1 b-tag jet
- ggF: inclusive category including events to entering in the previous regions. Splitted based on $|\cos \theta^*|$
 - **ggF "High Purity"**: $|\cos \theta^*| > 0.5$
 - **ggF "Low Purity"**: $|\cos \theta^*| < 0.5$

$Z,H{\rightarrow}\psi(nS)\gamma: event\ modelling$

Combine photon to meson candidate and perform fit on final state invariant mass distribution

- Parametrize QCD background with Power-laws, Exponentials, Bernstein functions: discrete profiling!
- Signal parametrized using Gaussian + Double-Sided Crystal Ball
- **Constrain** $Z \rightarrow \mu \mu \gamma$ background from control region (and measure $Z \rightarrow \mu \mu \gamma$ signal strength)

