

Higgs Physics at Multi-TeV Muon Collider

P. Andreetto¹, M. Casarsa², A. Gianelle¹, C. Giraldin^{1,3}, D. Lucchesi^{1,3}, L. Sestini¹, D. Zuliani^{1,3}

On behalf of IMCC

¹ INFN Padova
 ² INFN Trieste
 ³ Università degli Studi di Padova

ICHEP 2024 Prague - July 18, 2024

Higgs Physics at Muon Collider

- The last ESPPU identified **Higgs Physics** as the main physics target at future colliders:
 - Measure Higgs couplings to fermions and bosons at Ο ~O(1%) level
 - Measure **Higgs potential** with multi-higgs processes Ο
- The **Muon Collider** is by all means a **Higgs factory**

from P. Meade presentation

Energy	Luminosity	number of Higgs
3 TeV	1 ab⁻¹	5 x 10⁵
10 TeV	10 ab ⁻¹	9.5 x 10 ⁶
14 TeV	20 ab ⁻¹	2.2 x 10 ⁷
30 TeV	90 ab⁻¹	1.2 x 10 ⁹

 $\mu^+\mu^- \rightarrow hh\nu\bar{\nu}$

Events

The Muon Collider

[2407.12450] Interim report for the International Muon Collider Collaboration

Beam-Induced Background (BIB)

- Muons decay \rightarrow decay products interact with machine:
 - \rightarrow intense fluxes of particles reach the detector:
 - high multiplicity of particles in the tracker (mainly in first layers)
 - diffuse background in calorimeters
- Innovative techniques and optimised algorithms are fundamental to mitigate the impact of BIB
 - Tungsten **nozzles** mitigate radiation coming to the detector
 - BIB is off-time wrt bunch crossing, algorithms tailored to exploit these features
- Fundamental to have an **optimised concept** of the detector at 10 TeV

Muon Collider detector

[2303.08533] Towards a Muon Collider

- **3 TeV configuration** from CLIC detector
 - VXD updated to accommodate IR and nozzles
- For 10 TeV configuration, detector and MDI optimisation is in progress Talks by M. Casarsa and D. Calzolari
- BIB simulated by MARS @ 1.5 TeV → same/less impact from BIB @ 10 TeV

Higgs at Muon Collider with detailed detector simulation

- Higgs Physics at 10 TeV is similar to 3 TeV
 - Objects more boosted in the forward region $\frac{1}{4}$
 - Transverse momentum distributions similar
- While configuring 10 TeV detector, a study has been done for Higgs Physics at 3 TeV, using detailed detector simulation
- Main purposes of this work:
 - Prove that **BIB is under control**
 - Compare results with parametric studies
- List of studies:
 - Higgs cross-sections (bb, WW*, ZZ*, $\mu\mu$, $\gamma\gamma$)
 - \circ Higgs width Γ
 - Double Higgs cross-section
 - Trilinear self-coupling λ_3

Higgs Physics at a $\sqrt{s}=3$ TeV Muon Collider with detailed detector simulation

Paolo Andreetto^a, Nazar Bartosik^b, Laura Buonincontri^{a,c}, Daniele Calzolari^{c,d}, Vieri Candelise^{e,f}, Massimo Casarsa^e, Luca Castelli^{g,h}, Mauro Chiesaⁱ, Anna Colaleo^{i,k}, Giacomo Da Molin¹, Matthew Forslund^m, Luca Giambastiani^{a,c}, Alessio Gianelle^a, Karol Krizkaⁿ, Sergo Jindariani^o, Anton Lechner^d, Donatella Lucchesi^{a,c}, Leo Mareso^c, Paola Mastrapasqua^p, Patrick Meade^m, Alessandro Montella^q, Simone Pagan Griso^r, Nadia Pastrone^b, Lorenzo Sestini^a, Rosamaria Venditti^{j,k}, Angela Zaza^{j,k}, Davide Zuliani^{a,c}

Proof-of-concept for coming 10 TeV studies

Results at 3 TeV and comparison with parametric studies

- Results obtained with full simulation are compared with parametric studies (obtained with **Delphes card**)
- Results are in good agreement \rightarrow BIB is perfectly under control

Higgs decay channel	Full simulation	Parametric simulation	
H→bb	0.75%	0.76%	
H→WW	2.9%	1.7%	
H→ZZ	17%	11%	
H→µµ	38%	40%	
Н→үү	7.6%	6.1%	

[2308.02633] Precision Higgs Width and Couplings with a High Energy Muon Collider

- We are confident to reach results obtained by **pheno studies**
- The Muon Collider is definitely **competitive** in the landscape of future colliders

Di-Higgs production

- Di-Higgs production is particularly sensitive to trilinear Higgs self coupling $\lambda^{}_3$
- Here only the HH→bbbb channel has been considered
- Event selection: 4 jets with $p_T > 20$ GeV e $|\eta| < 2.5$
 - HH candidates are obtained by minimising $\sqrt{[(m_{12}^{-}m_{H}^{-})^{2} + (m_{34}^{-}m_{H}^{-})^{2}]}$
 - B-jet tagging identification algorithms required for one jet per di-jet pair
- Neural Network to separate signal from background

 At 10 TeV we can combine this result with other channels, e.g. HH→bbWW

Higgs potential at Muon Collider

- HH \rightarrow bbbb can be used to probe the precision on the trilinear Higgs self coupling λ_3
- Samples of HH \rightarrow bbbb have been simulated with WHIZARD for different values of $\kappa_{\lambda} = \lambda_{3} / \lambda_{SM}$
- Two MLPs are used to separate:
 - \circ HH \rightarrow bbbb from backgrounds
 - Trilinear contribution from other HH processes
- Pseudo-datasets are generated from 2D distributions of MLPs outputs
- A maximum-likelihood template fit is done for each κ_{λ} hypothesis

Higgs potential at Muon Collider - beyond 3 TeV

- Full simulation study shows **comparable** results wrt expectations from pheno studies
- Extrapolation to higher energies and luminosities
 → Muon Collider provides most precise results

[1910.00012] Higgs boson potential at colliders: status and perspective					
Experiment	Luminosity	COM Energy	δλ3		
CLIC	5 ab ⁻¹	3 TeV	-7%,+11%		
ILC	8 ab ⁻¹	1 TeV	10%		
FCC-hh	30 ab ⁻¹	100 TeV	3%		
Muon Collider	2 ab ⁻¹	3 TeV	15%		
Muon Collider	10 ab ⁻¹	10 TeV	3.5%		
Muon Collider	20 ab ⁻¹	14 TeV	2.5%		
Muon Collider	90 ab ⁻¹	30 TeV	1%		

- Possibility to access Higgs quartic self-coupling λ_4
 - As of now, only pheno study (detailed study in progress)

Expectations: $\delta \lambda_4 = 50\%$ at $E_{com} = 14$ TeV with 20 ab⁻¹

[2405.19314] Higgs Physics at a 3 TeV Muon

Going to 10 TeV

- Having understood the 3 TeV case, we are studying the **10 TeV Muon Collider**
- Several considerations can be done: Talks by M. Casarsa, D. Calzolari and R. Gargiulo
 - BIB is going to impact **as 3 TeV case** (or even **less** with MDI well optimised)
 - **Detector is going to be optimised** (to cope with BIB radiation)
 - Algorithms will be tailored for physics cases (e.g. ML for jets reconstruction)

	1
Object	Requirements
muons	$\frac{\Delta p_T}{p_T} = 0.4\%$
photons	$\frac{\Delta E}{E} = 3\%$
jets	$\frac{\Delta p_T}{p_T} = 15\%$
b-jets	$\frac{\Delta p_T}{p_T} = 15\%$
	b efficiency = 60 %
	c mistag = 20 %
<i>b</i> -jets	$\frac{\Delta p_T}{p_T} = 10\%$
(for λ_3)	b efficiency = 76 %
	c mistag = 20%

• The Muon Collider is one of the most interesting machine to study Higgs Physics

Higgs Physics at Multi-TeV Muon Collider

Conclusions

- Precision Higgs Physics will be the next milestone for future colliders
- The Muon Collider provides clear advantages:
 - Several high energy stages (at 10 TeV and beyond)
 - High statistics and access to multi Higgs processes
- Together with some important challenges:
 - R&D effort to satisfy machine requirements
 - Detector and algorithms optimisation to cope with **BIB presence**
- Higgs physics at 10 TeV is similar to 3 TeV
- The 3 TeV Higgs physics case has been well understood
 - Study with detailed detector simulation provides excellent agreement with pheno parametric studies
- This study paves the way to future studies at 10 TeV in time for the next ESPPU

Thank you for your attention!

Backup slides

Muon Collider parameters

Target integrated luminosities \sqrt{s} $\int \mathcal{L}dt$ 3 TeV1 ab⁻¹10 TeV10 ab⁻¹14 TeV20 ab⁻¹

Note: currently focus on 10 TeV, also explore 3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
N	10 ¹²	2.2	1.8	1.8	
f _r	Hz	5	5	5	
P _{beam}	MW	5.3	14.4	20	28
С	km	4.5	10	14	
	Т	7	10.5	10.5	
ε	MeV m	7.5	7.5	7.5	
σ _E / E	%	0.1	0.1	0.1	
σ _z	mm	5	1.5	1.07	
β	mm	5	1.5	1.07	
З	μm	25	25	25	
σ _{x,y}	μm	3.0	0.9	0.63	

Results for $H \rightarrow bb$ and $H \rightarrow WW^*$ at 3 TeV

- $H \rightarrow bb$: two jets in the final state
 - $\circ~~k_{_{\rm T}}$ algorithm, $p_{_{\rm T}}>40$ GeV and $|\eta|{<}2.5$
 - Two jets with a Secondary Vertex tag are required. Background from light jets is considered negligible
 - \circ Background mainly coming from Z \rightarrow bb/cc
- $H \rightarrow WW^*$: muon + 2 jets is the final state
- Signal and backgrounds generated with WHIZARD + Pythia8
- Two types of backgrounds:
 - with Higgs decay
 - without Higgs decay
- Two BDTs to separate signal from each kind of background

Events

10⁴

10³

10²

10

Higgs width $\boldsymbol{\Gamma}$

- e⁺e⁻ colliders measure the Higgs width using ZH events and measuring the recoil mass
- At >3 TeV Muon Collider, the ZH cross section is rather small
 - therefore, the "on-shell/off-shell" analysis is employed
- $\mu\mu \rightarrow vvZ(\rightarrow \mu\mu)Z(\rightarrow qq)$ is considered as the process most sensitive to κ
- A maximum likelihood template fit to κ is done to extract precision on κ
- Combination with expected precision on $\sigma(H \rightarrow ZZ^*)$ show a precision on $\Gamma/\Gamma_{SM} = 1^{+71\%}_{-88\%}$
- Results are comparable with expectations from pheno parametric studies
- For 10 TeV: ΔΓ=3.4%

($\Gamma/\Gamma_{SM} = 1^{+2.1\%}_{-0.4\%}$ with forward muon tagging)

