Foundational Quantum Tests with Higgs Bosons

Alan Barr University of Oxford

ICHEP2024, Prague, $20^{\rm th}$ July, 2024

AJB, Phys.Lett.<u>B 825</u> (2022) 136866 — <u>2106.01377</u> [hep-ph] AJB, P. Caban, J.Rembieliński — <u>2204.11063</u> [quant-ph] R.Ashby-Pickering, AJB, A.Wierzchucka — <u>2209.13990</u> [quant-ph] C.Altomonte, AJB, <u>2312.02242</u> [hep-ph]

Review article: AJB, M.Fabbrichesi, R.Floreanini, E.Gabrielli, L.Marzola — <u>2402.07972</u>, Prog.Part.Nucl.Phys.

Interesting physics \neq 'new' physics \neq beyond-SM physics

ON THE COVER

February 14, 2022

Threa-dimensional kinetic simulation of the onest of relativistic usual turbulence in the collision of two magnetic shear waves. Selected for a Viewpoint in Physics

Joonas Nättilä and Andrei M. Beloborodov Phys. Rev. Lett. 128, 075101 (2022).

Issue 7 Table of Contents | More Covers

PITYSTCS NEWS AND COMMENTARY

Pebruary 16, 2022 The quantized conductance of a two-dimensional electron can can reflect its Fermi surface topology.

Synoneis on: C.I. Kana Phys. Rev. Lett. 128, 076801 (2022)

EDITORS' SUGGESTION

Chaotic Diffusion in Delay Systems: Glant

I project objectio diffusion is found in supreme with deleved nonlinearity, accompanied by a reduction of the effective dimensionality

Two Albers, David Müller-Render Lukas Hile, and Günter Reform Phys. Rev. Lett. 128, 074101 (2022).

EDITORS' SUCCESTION

Collective Radiative Dynamics of an Ensemble of Cold Atoms Coupled to an Optical Waveguide

to a tapered optical fiber demonstrating collective effects in this system.

Riccardo Respetta et al Phys. Rev. Lett. 128, 073801 (2022)

Physics where and connerverage

February 15, 2022 Cell-substrate interactions explain a difference in behavior between individual cells and tissues on a surface.

Synonsis on: Andrew Killeen, Thibault Bertrand, and Chiu Fan Lee Phys. Rev. Lett. 128, 078001 (2022)

EDITORS' SUGGESTION

An analytical approach to stochastic epidemic models shows that the statistics of extreme outbreaks depend on an infinite number of minimum-action paths, and that extreme outbreaks define a new class. of rare processes for discrete-state stochastic systems.

Jason Hindes, Michael Assaf, and Ira B. Schwartz Phys. Rev. Lett. 128, 078301 (2022)

Physics News and COMMENTARY

February 14, 2022

Predictions indicate that it should be possible to directly identify how turbulence heats a given black hole's glasma from the spectrum of

Viewpoint on: Joonas Nättilä and Andrei M. Beloborodov Phys. Rev. Lett. 128, 075101 (2022)

Physics news and commentary

February 11 2022

Waves of vibration moving through the walls of a pipe can carry orbital angular momentum that could be used for several numores. according to new theoretical work.

Focus story on: G J. Chaplain, J. M. De Ponti, and R. V. Craster Phys. Rev. Lett. 128, 084301 (2022)

An ensemble of cold atoms is coherently counted in a controlled way

2/23

Some of the old problems are amongst the deepest...

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

New York Times, May 4 **1935**, reporting on Einstein-Podolsky-Rosen paper, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete"

... and they are experimentally accessible

J.S. Bell 'On the Einstein Podolsky Rosen paradox' (1964)

The textbook case – apparatus

(Ensemble of similarly-prepared systems)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ · → ⊙ < ⊙

Spin in the $H \rightarrow W^+W^-$ decay

The Higgs boson is a scalar, while W^{\pm} bosons are vector bosons.

- $H \rightarrow W^+W^-$ decays produce pairs of W bosons in a singlet spin state
- In the narrow-width and non-relativistic approximations:

$$|\psi_s\rangle = \frac{1}{\sqrt{3}} (|+\rangle |-\rangle - |0\rangle |0\rangle + |-\rangle |+\rangle)$$

This is a Bell state of a pair of qutrits

W bosons are their own polarimeters

V - A decays

SU(2) weak force is chiral

$$W^+ o \ell_R^+ + \nu_L$$

 $W^- o \ell_L^- + \bar{\nu}_R$

Decay of a W^{\pm} boson is equivalent to a measurement of its spin along the axis of the emitted lepton $\ell^+\ell^-$ azimuthal correlations in $H \to W^+W^-$

- Higgs signal concentrated at small $\Delta \phi_{\ell \ell}$
- Used e.g. in discovery searches

Image: 1

9/23

Quantum tests?

A fully-characterised quantum system is described by a ket $|\psi
angle$

A more general, not-fully-characterised, quantum system is described by a density matrix ρ

$$ho = \sum_i p_i \ket{\psi}_i ra{\psi}_i$$

each p_i is a classical probability

Entanglement

For some density matrix

$$ho = \sum_{i}
ho_{i} \ket{\psi_{i}} ra{\psi_{i}}$$

 p_i is a classical probability

Q: Can we write:

$$\rho \stackrel{?}{=} \sum_{i} p_{i} \ \rho_{A} \otimes \rho_{B} \qquad p_{i} \ge 0, \sum p_{i} = 1$$

i.e. as a convex sum of product states?

- Yes \implies separable
- No \implies entangled

For general ρ (i.e. not pure states) this is a very different statement from just being correlated

:▶ ◀≧▶ ≧ ∽৭୯ 13/23

For steering, discord see e.g. Y. Afik, J. de Nova 2209.03969

Bell inequality tests

The local realism formalism

Assume that there is a well-defined correlation function for the pair of measurement outcomes:

$$P(S_A, S_B) \equiv \int d\vec{\lambda} \ a(S_A, \vec{\lambda}) \ b(S_B, \vec{\lambda}) \ P(\vec{\lambda})$$

May depend on 'hidden' variables $\vec{\lambda}$ which have a PDF $P(\vec{\lambda})$

Assumptions

- $a(S_A, \vec{\lambda})$ does **not** depend on S_B
- $b(S_B, \vec{\lambda})$ does **not** depend on S_A
- $P(\vec{\lambda})$ does **not** depend on S_A nor on S_B

Demand that marginal probabilities for measurements of A and B are non-negative

Geometry

Parameterise ρ – bipartite system

Symmetrically for qutrits in terms of the Gell-Mann matrices λ_i

Single vector boson

$$\rho = \frac{1}{3}I_3 + \sum_{i=1}^8 \frac{a_i}{\lambda_i}\lambda_i,$$

 a_i : 8 real parameters $(3^2 - 1)$

Two vector bosons

$$\rho = \frac{1}{9}I_3 \otimes I_3 + \sum_{i=1}^8 \frac{a_i}{\lambda_i} \otimes \frac{1}{3}I_3 + \sum_{j=1}^8 \frac{b_j}{3}\frac{1}{3}I_3 \otimes \lambda_j + \sum_{i,j=1}^8 \frac{c_{ij}}{\lambda_i} \otimes \lambda_j,$$

8+8+64 = 80 real parameters (9² - 1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Quantum State Tomography $H \rightarrow WW^*$ decays – gutrit pair

 $pp \rightarrow H \rightarrow WW^{(*)} \rightarrow I \nu I \nu$ Singlet state 0.25 0.25 GM index 8 8 0.2 0.2 7 0.15 0.15 6 6 0.1 0.1 ш 5 0.05 0.05 4 -0.05 -0.05 3 3 -0.1 -0.1 2 2 -0.15 -0.15 1 -0.2 -0.2 -0.25 -0.25 1 2 3 Λ 5 6 7 8 1 2 3 5 6 7 8 W⁺ GM index A GM index

Density matrix parameters from simulated Higgs boson decays to vector bosons (Madgraph, no background)

2209.13990

19 / 23

 $H {\longrightarrow} W W^*$

Fabbrichesi et al. 2302.00683

 $H \longrightarrow ZZ^*$

Fabbrichesi et al. 2302.00683

A D > A D > A D > A D > э 21 / 23 Many systems of interest Qubit systems

$$\begin{aligned}
\eta_{c} \rightarrow \Lambda + \overline{\Lambda} \\
PP \rightarrow EE \\
e^{\frac{1}{2}} \rightarrow 8^{\frac{1}{2}} \rightarrow 2^{\frac{1}{2}} \\
h \rightarrow 2^{\frac{1}{2}} \\
h \rightarrow 8^{\frac{1}{2}}
\end{aligned}$$

Qutrit systems

B° -> J/4 K*° Bs -> ØØ Pp-> WW/22 $h \rightarrow WW^* / ZZ^*$

Prospects at flavour factories, LHC, future e^+e^- , ...

A broad new programme for collider physics

Testing the **foundations** of quantum theory (and beyond?)

- 12 orders of magnitude higher energy that existing tests (shorter time scale, shorter length scale...)
- In 'self-measuring' quantum system
- Deep in the realm of quantum field theory (virtual particles)
- in qubit and qutrit systems
- in bipartite and tripartite systems
- in systems with orbital angular momentum

[It's also a good way to find new fields]

Review: AJB, M.Fabbrichesi, R.Floreanini, E.Gabrielli, L.Marzola 2402.07972 Prog.Part.Nucl.Phys.

Image from ATLAS physics briefing

Parameterise ρ – bipartite system of qubits

in terms of the Pauli matrices σ_i

Single qubit
$$\rho = \frac{1}{2}l_2 + \sum_{i=1}^3 a_i \sigma_i,$$

$$a_i: \text{ 3 real parameters } (2^2 - 1)$$

Two qubits $\rho = \frac{1}{4}I_2 \otimes I_2 + \sum_{i=1}^3 a_i \sigma_i \otimes \frac{1}{2}I_2$ $+\sum_{j=1}^{3} \frac{b_j}{2} \frac{1}{2} l_2 \otimes \sigma_j + \sum_{i,j=1}^{3} \frac{c_{ij}}{\sigma_i} \otimes \sigma_j,$ 3+3+9 = 15 real parameters $(4^2 - 1)$

Measure the parameters $(a_i b_j, c_{ij})$ and test properties of bipartite ρ

Aside on pure states

Pure states are those for which ρ can be written:

 $\rho = \left|\psi\right\rangle\left\langle\psi\right|$

These idealised states have very particular properties. Consider, for example:

 $|\psi\rangle = \alpha |\uparrow_{A}\rangle \otimes |\uparrow_{B}\rangle + \beta |\downarrow_{A}\rangle \otimes |\downarrow_{B}\rangle$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

This is both entangled and correlated for $(\alpha, \beta) \neq 0$

But for a general ρ correlated \neq entangled

Alice and Bob can make states like

$$\rho_{\rm corr} = \frac{1}{2} \Big(\rho_{\mathcal{A}}(\uparrow) \otimes \rho_{\mathcal{B}}(\uparrow) + \rho_{\mathcal{A}}(\downarrow) \otimes \rho_{\mathcal{B}}(\downarrow) \Big)$$

where

$$\rho_A(\uparrow) \equiv \left|\uparrow_A\right\rangle \left\langle\uparrow_A\right|$$

etc.

This is classically correlated, but not entangled

- it can be written as a sum of products (as it is above)

Figure 3: Concurrence of the spin density matrix $\rho^{I}(\beta, \hat{k})$ resulting from an initial state $I = q\bar{q}, gg$ as a function of the top velocity β and the production angle Θ in the $t\bar{t}$ c.m. frame. All plots are symmetric under the transformation $\Theta \to \pi - \Theta$. Left: $q\bar{q} \to t\bar{t}$. Right: $gg \to t\bar{t}$. Solid black lines represent the critical boundaries between separability and entanglement $\beta^{\rm PH}_{c1,c2}(\Theta)$, while dashed black lines represent the critical boundaries for the violation of the CHSH inequality, $\beta^{\rm CH}_{c1,c2}(\Theta)$.

Expect $t\bar{t}$ are entangled near threshold and at high p_T

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖 ● ���

ATLAS observation of quantum entanglement

- *t*t spin-qubit pair
- Decay before hadronisation
- Leptons measure top spin
- D = tr[C]/3
- \exists no separable states with $D < -\frac{1}{3}$

ATLAS result

$$D_{\rm obs} = -0.547 \pm 0.002 \,[{\rm stat.}] \pm 0.021 \,[{\rm syst.}] \quad (> 5\sigma)$$

ATLAS: Briefing / ATLAS-CONF-2023-069 / 2311.07288

Recent CMS result

• Includes colour singlet toponium model

•
$$D = -0.478^{+0.025}_{-0.027}$$

• 5.1 obs (4.7 exp) σ

CMS: Briefing / CMS-PAS-TOP-23-001 / 2406.03976

High-m_{tt} CMS result

- Semi-leptonic channel
- High invariant mass region
- Space-like separated decays dominate
- $\Delta_{\rm Ecrit}$ corrected on statistical basis for time-like separated events

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

CMS: Briefing LHCP talk Link to the PAS

 $pp \longrightarrow ZZ$

Fabbrichesi et al. 2302.00683

うせん 前 ふばやふばやふむやる

Searching Beyond the Standard Model?

- Production of $W\pm/Z$ pairs at pp, e^+e^-
- Quantum spin observables complementary probes of Wilson coefficients/EFT
- Offer increased sensitivity to certain operators

Aoude, Madge, Maltoni, Mantani Probing new physics through entanglement in diboson production 2307 09675

The CGLMP Qutrit inequality

Collins Gisin Linden Massar Popescu (2002)

The optimal Bell inequality for pairs of qutrits

CGLMP function

$$\begin{aligned} \mathcal{I}_3 &= P(A_1 = B_1) + P(B_1 = A_2 + 1) \\ &+ P(A_2 = B_2) + P(B_2 = A_1) \\ &- P(A_1 = B_1 - 1) - P(B_1 = A_2) \\ &- P(A_2 = B_2 - 1) - P(B_2 = A_1 - 1). \end{aligned}$$

 $P(A_i = B_j + k)$ is the probability that A_i and B_j differ by $k \mod 3$

CGLMP limits?

In a local realist theory

 $\mathcal{I}_3 \leq 2$

In QM

$$\mathcal{I}_3^{\mathrm{QM}} \leq 1 + \sqrt{11/3} pprox 2.9149$$

In QM for a maximally entangled state

$$\mathcal{I}_3^{\mathrm{QM,singlet}} \leq 4/(6\sqrt{3}-9) pprox 2.8729$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Testing the CGLMP inequality

Knowing elements of ρ calculate

$$\mathcal{I}_3 = \mathsf{tr}(
ho \, \mathcal{B}^{xy}_{ ext{CGLMP}})$$

where the CGLMP operator is

$$\mathcal{B}^{xy}_{ ext{CGLMP}} = -rac{2}{\sqrt{3}} \left(\mathcal{S}_x \otimes \mathcal{S}_x + \mathcal{S}_y \otimes \mathcal{S}_y
ight) + \lambda_4 \otimes \lambda_4 + \lambda_5 \otimes \lambda_5$$

where

$$S_x = \frac{1}{\sqrt{2}}(\lambda_1 + \lambda_6)$$
 and $S_y = \frac{1}{\sqrt{2}}(\lambda_2 + \lambda_7).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●