Christian Biello

in collaboration with Aparna Sankar, Marius Wiesemann, Giulia Zanderighi [Eur.Phys.J.C 84 (2024) 5, 479] + Javier Mazzitelli [in progress]

NNLO+PS predictions for Higgs production via bottom fusion

42th Internation Conference on High Energy Physics Prague, Czech Republic July 18th, 2024

Problem: Match fixed-order predictions with parton shower avoiding an unphysical matching scale.

POWHEG idea: implement a Monte Carlo generator that produces just the first shower emission using exact NLO matrix elements.

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 1/12 ICHEP 2024, Prague

Nason [hep-ph/0409146]

Nason [hep-ph/0409146]

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 2/12 ICHEP 2024, Prague

 \searrow

 $\frac{1}{2}$ \overline{r} Obtain NLO accurate predictions for H production with particular scale choices and a **special Sudakov factor** .

Start form an HJ generator and perform the PS matching in **POWHEG** .

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 2/12 ICHEP 2024, Prague

Start form an HJ generator and perform the PS matching in **POWHEG**.

 $\frac{1}{2}$ \overline{r} Obtain NLO accurate predictions for H production with particular scale choices and a **special Sudakov factor**.

 \searrow

It includes all the terms required to reach NNLO+PS accuracy for the inclusive observables.

Crucial scale choice:

 $\sqrt{10}$ $\mu_R \sim \mu_F \sim p_T$

Why Higgs production via bottom fusion?

Although it is not the main production channel, the Higgs creation via bottom fusion

- allows a **direct** evaluation of the **bottom Yukawa** coupling
- is enhanced in SUSY theories with large $\tan \beta$ and can become the dominant channel
- is the dominant irreducible **background** in searches for **HH production** see Elena Mazzeo's talk

Why Higgs production via bottom fusion?

Although it is not the main production channel, the Higgs creation via bottom fusion

 $b\bar{b}H$ is also of theoretical interest for $4\bar{F}S$ $8\leq \frac{3}{L}$ $\frac{3}{L}$ 5FS the **different schemes** of calculations that can be used

- allows a **direct** evaluation of the **bottom Yukawa** coupling
- is enhanced in SUSY theories with large $\tan \beta$ and can become the dominant channel
- is the dominant irreducible **background** in searches for **HH production** see Elena Mazzeo's talk
- ✓ DGLAP evolution resums initial state logs into *f b*
- ✓ Computing higher orders is easier

• Neglecting $O(m_b/m_H)$, it yields less accurate description of bottom kinematic distribution

$NNLO_{QCD}$ + PS

massless scheme

- ✓ DGLAP evolution resums initial state logs into *f b*
	- Computing higher orders is easier

• Neglecting $O(m_b/m_H)$, it yields less accurate description of bottom kinematic distribution

$NNLO_{OCD}$ + PS

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 4/12 ICHEP 2024, Prague

massless scheme

decoupling/massive scheme

It does not resum possibly large collinear logs

- Computing higher orders is more difficult due to higher multiplicity
- $\sqrt{\frac{m_b}{m_H}}$ are there at any order

$NNLO_{OCD}$ + PS

5FS results

Transverse momentum spectrum of the Higgs boson

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 5/12 ICHEP 2024, Prague

Rapidity distribution of the Higgs boson

- At small $p_{T,H}$, MiNNLOPS significantly dampens the distribution.
- At high $p_{T,H}$, MiNNLOPS and MiNLO' coincide, both NLO accurate
- MiNNLOPS has a flat negative correction in the rapidity y_H distribution

CB, Sankar, Wiesemann, Zanderighi [2402.04025]

Comparison with analytic results

NNLO Harlander, Tripathi, Wiesemann [1403.7196] **NNLO+NNLL** Harlander, Tripathi, Wiesemann [1403.7196]

Transverse momentum spectrum of the Higgs

We compare the MINNLOPS implementation with the NNLO+NNLL results for high $p_{T,H}$

• **Better agreement** at high $p_{T,H}$ with the resumed results compared to NNLO

The missing logs in 4FS MiNLO'

- In MiNLO' there are no cancellations of the large $log(m_b)$ in the real (RV, RR) contributions.
- We need the W contribution to cancel the quasicollinear divergences.
- Same behaviour observed in $b\bar{b}\ell^+\ell^-$.
	- Mazzitelli, Sotnikov, Wiesemann [2404.08598]

The missing logs in 4FS MiNLO'

 $\mathscr{A}^{(2)}$ m_b =0 ⟩ Massless two-loop Badger, Hartanto, Kryś, Zoia [2107.14733] MiNNID_{PS}

VV approximation by retaining all the log-enhanced contributions through the massification procedure

- In MiNLO' there are no cancellations of the large $log(m_b)$ in the real (RV, RR) contributions.
- We need the W contribution to cancel the quasicollinear divergences.
- Same behaviour observed in $b\bar{b}\ell^+\ell^-$.
	- Mazzitelli, Sotnikov, Wiesemann [2404.08598]
	-

$$
|\mathcal{A}^{(2)}\rangle = \log(m_b)\text{-terms} + \text{const.} + \mathcal{O}\left(\frac{m_b}{Q}\right)
$$

$$
\mathcal{F}^{(2)}\,|\,\mathcal{A}^{(0)}_{m_b=0}\rangle + \mathcal{F}^{(1)}\,|\,\mathcal{A}^{(1)}_{m_b=0}\rangle + \mathcal{F}^{(0)}\,|\,\mathcal{S}
$$

C. Biello, NNLO+PS predictions for Higgs production via bottom fusion 7/12 ICHEP 2024, Prague

Massification

First two-loop massification for Bhabha scattering Penin [hep-ph/0508127]

Extension for non-abelian theories from factorisation principles

Mitov, Moch [hep-ph/0612149]

Massification

Extension for non-abelian theories from factorisation principles

First massification of internal loops for Bhabha using the SCET formalism

Recent application for QCD amplitudes

First two-loop massification for Bhabha scattering Penin [hep-ph/0508127]

Becher, Melnikov [0704.3582]

Wang, Xia, Yang, Ye [2312.12242]

We applied decoupling relations for α_{s} and MS Yukawa

Mitov, Moch [hep-ph/0612149]

Flavour-scheme comparison

- Large differences in the predictions were first observed at leading order: the effect of
- Factorisation scales were tuned in order to improve the agreement $(\mu_F^{5FS} = \mu_F^{4FS}/4)$.

collinear resummation is extremely large.

FS comparison: Higgs rapidity

CB, Mazzitelli, Sankar, Wiesemann, Zanderighi [in progress]

FS comparison: Higgs spectrum

CB, Mazzitelli, Sankar, Wiesemann, Zanderighi [in progress]

Summary and outlook

- Implementation of the MiNNLOPS method for bbH production in 5FS and 4FS with MS Yukawa coupling y_h^2 *b*
- The theoretical tension between the 4FS and 5FS predictions significantly decreases at NNLO: they agree within the scale uncertainty
- The analysis can perform a b-tagging of the MiNNLOPS events \bigcirc
- A combination of 4FS and 5FS results can improve the description of the process in the whole phase space at differential level

Summary and outlook

- Implementation of the MiNNLOPS method for bbH production in 5FS and 4FS with MS Yukawa coupling y_h^2 *b*
- The theoretical tension between the 4FS and 5FS predictions significantly decreases at NNLO: they agree within the scale uncertainty
- The analysis can perform a b-tagging of the MiNNLOPS events \bigcirc
- A combination of 4FS and 5FS results can improve the description of the process in the whole phase space at differential level

Thank you for your attention!

Backup slides

Massive-massless mapping for massification

We fix the 4-momenta of the incoming partons and the Higgs state k_5 . We want to maintain the invariant mass of the pair

 $m_{QQ} = ($

We introduce the factors

 $\rho_{\pm} = \frac{1}{4}$

and we define the new momenta as a linear combination of the old ones as follows in the quark-channel,

 \tilde{k}^{μ}_3 \tilde{k}^{μ}_4

For the gluon channel, we have to avoid the collinear divergence,

$$
\tilde{k}_i^{\mu} = k_i^{\mu} + \left(\sqrt{1 - \frac{m_Q^2 n_x^2}{(p_i \cdot n_i)^2}} - 1\right) \frac{p_i \cdot n_i}{n_i}, \quad \text{for } i = 3, 4,
$$
\n(6)

where n_i is the transverse component to both k_1 and k_2 . The momentum conservation is restored by performing a Boost such that

$$
\tilde{k}_1 + \tilde{k}_2 = k_1 + k_2 - (k_3 + k_4 - \tilde{k}_3 - \tilde{k}_4). \tag{7}
$$

$$
(k_3+k_4)^2=(\tilde k_3+\tilde k_4)^2.
$$

$$
\frac{\pm \rho}{2\rho}, \rho = \sqrt{1 - \frac{4m_Q^2}{m_{QQ}^2}}
$$
 (3)

$$
= \rho_{+} k_3^{\mu} - \rho_{-} k_4^{\mu}, \tag{4}
$$

$$
=\rho_{+}k_4^{\mu}-\rho_{-}k_3^{\mu}.\tag{5}
$$

Shower effects in 4FS

$\overline{B} = B + V + \left[d\phi_{rad} R \right]$

The exact NLO prediction is

$$
\langle \mathcal{O} \rangle = \int d\Phi_n \mathcal{O}(\Phi_n) \bar{B}(\Phi_n) + \int d\Phi_n d\phi_{rad}
$$

Comparing with the SMC

we deduce the Sudakov form factor and the shower formula in POWHEG

$$
\langle \mathcal{O} \rangle_{SMC} \simeq \left[d\Phi_n \left[\mathcal{O}(\Phi_n) B(\Phi_n) + B(\Phi_n) \int_{t_0} \frac{dt}{t} dz d\varphi \left(\mathcal{O}(\Phi_n, \phi_r) - \mathcal{O}(\Phi_n) \right) \frac{\alpha_s}{2\pi} P(z) \right],
$$

$$
\langle \mathcal{O} \rangle = \int d\Phi_n \overline{B(\Phi_n)} \left[\mathcal{O}(\Phi_n) \Delta_{t_0}^{pwg} + \int d\phi_{rad} \mathcal{O}(\Phi_n, \phi_{rad}) \Delta_t^{pwg} \frac{R(\Phi_n, \phi_{rad})}{B(\Phi_n)} \right]
$$

with $\Delta_t^{pwg} = \exp \left[- \int d\phi'_{rad} \frac{R(\Phi_n, \phi'_{rad})}{B(\Phi_n)} \Theta(t'-t) \right]$

 ∂ ($\mathcal{O}(\Phi_n, \phi_{rad}) - \mathcal{O}(\Phi_n)$) $R(\Phi_n, \phi_{rad})$

NLO $X_1 \rightarrow NNO$ X **MiNNLOPS in a nutshell**

MiNNLOPS is an extension of MiNLO' to achieve NNLO+PS accuracy for inclusive

observables.

The modified POWHEG function is

$$
\bar{B}(\Phi_{XJ}) = e^{-\tilde{S}(p_T)} \left\{ B \left(1 - \alpha_s(p_T) \tilde{S}^{(1)} \right) \right\}
$$

$$
\hat{B}(\Phi_{XJ}) = \frac{1}{\sqrt{2\pi}} \sum_{\text{minLO'} \text{struct}} \tilde{S}^{(1)}(\Phi_{XJ})
$$

The QCD scales must be $\mu_F \sim \mu_R \sim p_T$ in the singular region.

Monni, Nason, Re, Wiesemann, Zanderighi [1908.06987]

Comparison with resummed results (PS)

Transverse momentum spectrum of the Higgs

NNLO+NNLL Harlander, Tripathi, Wiesemann [1403.7196]

- Acceptable agreement for s mall $p_{T,H}$
- The shower has an effect on the tail

C. Biello, Backup slides QCD Rencountres de Moriond 2024

5FS scale variation

We studied the effects of the correlation between the renormalisation scale factors.

We compare:

- The standard prediction
- 7pt s.v. for (K_R^{α}, K_F)
- 7pt s.v. for (K_R^y, K_F)

 $y_{b}(m_{H}) \rightarrow y_{b}(k_{R}m_{H})$
 $\alpha_{s}(p_{T}) \rightarrow \alpha_{s}(k_{R}p_{T})$
 $f_{a}(p_{T}) \rightarrow f_{a}(k_{F}p_{T})$ MINNLOPS

Historical LO comparisons

Large differences in the predictions were first observed at the leading order: the effect of collinear resummation is extremely large.

> For $\mu_F = m_H/4$, FO computations in the different schemes become compatible, indeed the collinear logs have a small effect. This also improved the convergence of the perturbation series.

The improvement of the compatibility opens the possibility to match together the predictions at least at the inclusive level (Santander matching, FONLL…)

Differences between schemes

be merged into a consistent picture by taking into account two main results.

- Lot of progress in understanding the origin of the differences. The predictions can
	- 1. At NLO, the resummation effects of collinear logs are important only at high Bjorken-*x*
	- 2. The possibly large ratios m_H^2/m_b^2 are always accompanied by universal phase space factors *f*

$$
\ln^2 \frac{m_H^2 f}{m_b^2} = \ln^2 \frac{\tilde{\mu}^2}{m_b^2}, \quad \tilde{\mu} < m_H
$$

FONLL

• FONLL matches the flavour schemes $\sigma^{FONNL} = \sigma^{4FS} + \sigma^{5FS}$ – double couting.

For a consistent subtraction, we have to express the two cross-sections in terms of the same α_{s} and PDFs.

• Currently, the flavour matching for bbH is performed at

 $FORML_C := N³Log_{FS} \oplus NLOG_{FS}.$

• Differential FONLL applied for Z+b-jet $d\sigma^{FONLL} = d\sigma^{5FS} + \left(d\sigma^{4FS}_{m_b} - d\sigma^{4FS}_{m_b \to 0}\right)$

Forte, Napoletano, Ubiali [1508.01529] Forte, Napoletano, Ubiali [1607.00389]

