Analytic electroweak corrections to di-Higgs and Higgs+jet production

Hantian Zhang

Institute for Theoretical Particle Physics (TTP) Karlsruhe Institute of Technology (KIT)

In collaboration with Joshua Davies, Kay Schönwald and Matthias Steinhauser Based on [JHEP 08 (2022) 259] & [JHEP 10 (2023) 033] & [2407.05787] & [2407.12107]

ICHEP 2024 — Prague

Institute for Theoretical Particle Physics

Motivation: probe Higgs self-coupling

 \bullet $\lambda = m_H^2/(2v^2) \approx 0.13$ in the Higgs potential

$$V(H) = \frac{1}{2} m_H^2 H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

Gluon-fusion channel dominates Higgs boson pair production (key process at HL-LHC) ullet

Probe Higgs self-coupling in Higgs pair productions, and compare with the Standard Model value

New Physics opportunity?

[Iguro, Kitahara, Omura, **Zhang**, *Phys.Rev.D* 107 (2023) 7, 075017]

Motivation of Higgs+jet: study p_T^H spectrum

• Dominant channel for Higgs boson production with large transversal momentum p_T^H at LHC

Precise Higgs + 2 jets @ NLO QCD also available (Chen, Huss, Jones, Kerner, Lang, Lindert, Zhang, JHEP 03 (2022) 096

Overview of EW calculations

Analytical approach

- Yukawa-top corrections in high-energy expans [Davies, Mishima, Schönwald, Steinhauser, Zh
- Yukawa-top corrections in large- m_t limit [Mühl Schlenk, Spira, 22']
- Full top-induced EW corrections in large- m_t ex [Davies, Schönwald, Steinhauser, **Zhang**, 23']
- Factorizable EW corrections [Davies, Schönwa Steinhauser, **Zhang**, 24']
- Mixed QCD-EW correction (fully analytic) [Bonetti, Panzer, Smirnov, Tancredi, 20']
- Higgs self-coupling corrections in large- m_t expansion • [Gao, Shen, Wang, Yang, Zhou, 23']
- Full top-induced EW corrections in large- m_t expansion \bullet [Davies, Schönwald, Steinhauser, **Zhang**, 23']

This talk: analytic expansion in large-mass, forward scattering, and high-energy kinematics

 $gg \rightarrow HH$

 $gg \rightarrow Hg$

Numerical approach

sion nang, 22']	•	Higgs self-coupling corrections with SecDec [Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao, 19']
lleitner,	•	Full EW corrections with AMFlow [Bi, Huang, Huang, Ma, Yu, 24']
kpansion	•	Yukawa and Higgs self-coupling corrections with SecDec [Heinrich, Jones, Kerner, Stone, Vestner, 24]
ald,		

[See talk by Matthias Steinhauser for QCD corrections to di-Higgs]

 p_T^H (GeV)

 p_T^H (GeV)

- **Forward-scattering** expansion
- Major production region
- Semi-analytic results

 10^{3}

 p_T^H (GeV)

Forward-scattering expansion

Major production region

High-energy expansion

Sensitive to new physics @ large p_T^H Large EW-log corrections Analytic Feynman integrals

 p_T^H (GeV)

Two-loop EW diagrams with top-quark (H+jet)

 \bullet

Sample two-loop diagrams involving SM fields: $\{t, b, H, \gamma, Z, W^{\pm}, \chi, \phi^{\pm}\}$ and ghosts: $\{u^{\gamma}, u^{Z}, u^{\pm}\}$

Two-loop EW diagrams with top-quark (HH)

ullet

Sample two-loop diagrams involving SM fields: $\{t, b, H, \gamma, Z, W^{\pm}, \chi, \phi^{\pm}\}$ and ghosts: $\{u^{\gamma}, u^{Z}, u^{\pm}\}$

Large- m_t expansion and EW renormalisation

- Expansion hierarchy: $m_t^2 \gg s, t, m_H^2, m_W^2, m_Z^2$

- On-Shell renormalise input parameters $\{e, m_W, m_Z, m_t, m_H\}$ in G_{μ} scheme
- ξ_W, ξ_Z cancel after external Higgs fields OS renormalisation

- Expand and calculate in general R_{ξ} gauge with large gauge fixing parameters $\xi_Z, \xi_W \gg 1$

Matrix elements for $gg \rightarrow gH @ NLO EW$

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Good convergence observed, corrections are small $\leq O(1\%)$

Matrix elements for $gg \rightarrow HH$ @ NLO EW

[Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Not very good convergence at NLO, but serve as boundaries to forward scattering expansion

Matrix elements for $gg \rightarrow HH @$ NLO EW

$$\mathcal{M} = \frac{1}{8^2 2^2} \sum_{\text{col pol}} \sum_{\text{pol}} |\mathcal{A}|^2 = \frac{1}{16} (X_0^{\text{ggHH}} s)^2 \tilde{U}_{\text{ggHH}}$$

Famous di-Higgs destructive interference (vanishing ME at production threshold in HTL) is **lifted**

3-loop QCD corrections also **lifts** this destructive interference [Grigo, Melnikov, Steinhauser, 14']

Large EW (Yukawa) corrections found near production threshold by several groups

[Mühlleitner, Schlenk, Spira, 22'] [Bi, Huang, Huang, Ma, Yu, 24'] [Heinrich, Jones, Kerner, Stone, Vestner, 24] [Davies, Schönwald, Steinhauser, Zhang, JHEP 10 (2023) 033]

Sample two-loop diagrams and expansion strategy \bullet

Taylor expansion in internal mass difference and external Higgs mass

Beyond large- m_t expansion @ NLO Yukawa $\mathcal{O}(\alpha_s y_t^4)$

Use boundary conditions from large- m_t limit

Forward scattering expansion

[See talk by M. Steinhauser]

 $s, t, u \gg m_t^2$

High-energy expansion

High energy expansion @ NLO Yukawa

- 1. Asymptotic expansion: $s, t \gg m_t^2$
- 2. System of differential equations for 140 Master Integrals from IBP reduction [Kira]

$$\frac{\partial}{\partial (m_t^2)} \mathbf{I} = M(s, t, m_t^2, \epsilon) \mathbf{I} \quad \text{with} \quad \mathbf{I} = (\mathcal{I}_1, \dots, \mathcal{I}_{140})^T$$

3. Plug in **power-log ansatz** for each master integral

$$\mathcal{I}_n = \sum C_{(n)}^{ijk} ($$

- with help of asy.m [Smirnov], MB.m [Czakon], HarmonicSums.m and Sigma.m [Ablinger, Schneider]
- 5. Apply **Padé approximations** to $\mathcal{O}(m_t^{120})$ expansion terms at the level of form factors as a **precision tool**

Combination of F.S. and H.E. expansions @ NLO Yukawa

 $\mathscr{A}^{\mu\nu} = T_1^{\mu\nu} \mathscr{F}_1 + T_2^{\mu\nu} \mathscr{F}_2^{\mu\nu}$

$$p_T^H = \sqrt{\frac{u t - m_H^4}{s}}$$

Highest available expansion terms are used

Comparison to SecDec numerical results @ NLO Yukawa

Finite part of bare two-loop form factor comparison to SecDec group [Heinrich, Jones, Kerne, Stone, Vestner, 2407.04653]

High-energy expansion agree perfectly with SecDec results

Forward-scattering expansion agree within 2% level with SecDec near production threshold (more expansion terms under computing)

by Hantian Zhang — *hep-ph* [2407.12107]

Sample Feynman diagrams calculated by AsyInt

- For analytic calculations of massive two-loop four-point integrals at high energies
 - Download at: <u>https://gitlab.com/asyint/asyint-public</u>

Conclusions

- high-energy expansion [JHEP 08 (2022) 259]
 - Precise (semi)-analytic results for the whole phase space
 - Cross-checked with SecDec group's numerical results
- expansion [JHEP 10 (2023) 033]
- We also compute factorisable EW corrections to $gg \rightarrow HH$ analytically [2407.05787]
- AsyInt released in [2407.12107]
 - Toolbox for analytic calculations of massive two-loop four-point Feynman integrals at high energies

We compute NLO leading Yukawa corrections to $gg \rightarrow HH$ in forward-scattering expansion and

We compute full top-induced NLO EW corrections to $gg \rightarrow HH$ and $gg \rightarrow gH$ in large- m_t

Backup Slides

Higgs+2 jets @ NLO QCD

• Dominant channel for Higgs boson production with large transversal momentum p_T^H at LHC

[Chen, Huss, Jones, Kerner, Lang, Lindert, Zhang, JHEP 03 (2022) 096]

Forward scattering expansion @ NLO Yukawa

1. Taylor expansion in $t \to 0$: t-series expressed in terms of MIs $I(s, m_r^2)$

[Davies, Mishima, Schönwald, Steinhauser, 23']

- 2. Compute boundary conditions at $s/m_t^2 \rightarrow 0$ limit
- 3. Use "Expand and match" method evolve I(s)

through differential equations [Fael, Lange, Schönwald, Steinhauser, 21', 22']

$$m_t$$
 m_t m_t m_t

$$(s, m_t^2)$$
 towards $s/m_t^2 \to \infty$

High energy expansion @ NLO Yukawa

Solid color lines: Padé improved results using MIs from $\mathcal{O}(m_t^{116})$ in two expansion approaches **Dashed color lines:** Naive expansions at high energies to $\mathcal{O}(m_r^{116})$

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

High energy expansion @ NLO Yukawa

Grey lines: Coincide with colourful lines (two approaches agree)

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

Convergence of H.E. expansions for $gg \rightarrow HH$ form factors

[Davies, Mishima, Schönwald, Steinhauser, Zhang, JHEP 08 (2022) 259]

 $\mathscr{A}^{\mu\nu} = T_1^{\mu\nu} \mathscr{F}_{\text{box}1} + T_2^{\mu\nu} \mathscr{F}_{\text{box}2}^{\mu\nu}$

The benchmark is expansion at $\mathcal{O}\left(m_{H^{(\mathrm{ext})}}^4, \delta^3, m_t^{116}\right)$ $m_H^{(int)}$ $\delta = 1$ \mathcal{M}_{t}

Color points: Convergence plot of different expansion orders by ratios to the benchmark at fixed $p_T^H = 200$ GeV.

