<u>ICHEP, Prague, 17-24 Jul. 2024</u>

JHEP 09 (2023) 179

Stefano Manzoni, <u>Elena Mazzeo</u>, Javier Mazzitelli, Marius Wiesemann, Marco Zaro

UNIVERSITÀ **DEGLI STUDI DI MILANO**

bbH as a background for HH: taming a leading theoretical uncertainty in HF measurements via accurate simulation of bbH production

Outline

The bbH background for HH searches

The most sensitive HH channels all involve the $H \rightarrow bb$ decay.

Single Higgs boson production + bb (= *bbH*) is an irreducible bkg. for all these searches!

- **bbH rate comparable** to **SM HH signal** in **HH phase space**.
- y_t^2 contribution currently simulated by the experiments using ggF NNLOPS (ATLAS) or MiNLO (CMS):

• Only at most LO-accurate for ggF Higgs + 2 jets.

- ATLAS HH searches assign a **100% uncertainty** to the **ggF H** + bb background.
 - Also motivated by data MC disagreement in other analyses (see JHEP 08 (2022) 027 and Eur. Phys. J. C 80 (2020) 942).
 - Now the **primary systematic uncertainty** for **HH searches**, affecting the current constraints on HH production from **ATLAS** by **25%**!

Crucial to have **better description** of the **bbH background** for the **next generation of HH searches**!

The bbH process @ NLO

The (fiducial) rates for the bbH process was computed @ NLO in the 4-flavor scheme (4FS), using MadGraph5_aMC@NLO. = Massive bottom quarks. Including the $_{\sim}y_b^2$ and the $_{\sim}y_t^2$ contributions and the interference ($_{\sim}y_by_t$).

ICHEP 2024

JHEP 07 (2019) 054, N. Deutschmann, F. Maltoni, M. Wiesemann, M. Zaro, 2019.

The yt² contribution to the bbH cross-section is dominant already @ LO.

Becomes even larger @ NLO, with K-factors = 2 - 3.

• Large NLO / LO K-factors for both y_t^2 and y_b^2 components, with strong dependence on the differential distributions.

Critical to have **reliable** predictions for the **bbH process @ NLO**.

• The **interference** term is **subdominant** (= **5-10%** w.r.t. the total).

Subleading w.r.t. the relatively large scale uncertainties ($\approx 50\%$).

The bbH process @ NLO + PS (4FS) in the phase space of $HH \rightarrow bbyy$

We present a simulation of bbH process @ NLO + matching to parton shower (PS) in the 4FS + dedicated analysis targeting the HH phase space! \longrightarrow Using the HH \rightarrow bb $\gamma\gamma$ search as a representative case.

Setup

- Same approach & settings as JHEP 07 (2019) 054.
 - $m_b = 4.92 \text{ GeV}, m_t = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}.$
 - PDF set NNPDF31 nlo as 0118 nf 4.
 - Central scales $\mu_R = \mu_F = \mu_{Sh} = H_T / 4$.
- We simulate only the y_b^2 and y_t^2 contributions (= the y_by_t interference is ignored).
- Fiducial cuts inspired by $HH \rightarrow bb\gamma\gamma$ analysis (JHEP 01 (2024) 066).
 - Consider **di-photon decay** of the **Higgs boson**.
 - Anti-k_T jets with R = 0.4, with $p_T > 25$ GeV and $|\eta| < 2.5$.
 - At least 2 photons and exactly 2 b-jets (= jets containing at least one B-hadron).

 - *b*-jet cuts: $80 < m_{bb} < 140$ GeV. Targeting the $H \rightarrow bb$ kinematics.

<u>JHEP 09 (2023) 179</u>

- Photon cuts: $p_T(\gamma_{1(2)}) > 0.35 (0.25) \times m_{\gamma\gamma}$, $|\eta(\gamma)| < 2.37$, $105 < m_{\gamma\gamma} < 160$ GeV. — Targeting the $H \rightarrow \gamma\gamma$ kinematics.

bbH as a background for HH

The bbH process @ NLO + PS (4FS) in the phase space of $HH \rightarrow bbyy$

We present a simulation of bbH process @ NLO + matching to parton shower (PS) in the 4FS + dedicated analysis targeting the HH phase space! \longrightarrow Using the HH \rightarrow bb $\gamma\gamma$ search as a representative case.

Fiducial cross-sections

Cut	Contr.	Run	LO	NLO	$\delta\mu_{R,F}$	δQ_{sh}	$\frac{\text{NNLOPS}}{(y_t^2 \text{ LO})}$	HH signal
Fid. cuts	y_b^2	PY8 HW7	3.15 2.59	4.22	$+15\% \\ -15\%$	+10% -4% +8%	29.9	
	y_t^2	PY8	8.24	18.1	$+58\% \\ -34\%$	-12% +10% -7% +4%	$a \rightarrow b\overline{b}$	22.7
	sum	HW7 PY8	6.83 11.4	16.6 22.3	$+50\% \\ -30\%$	-5% +10% -6%	$g \rightarrow 00.$ 17.2	
		HW7	9.42	20.7		$+4\% \\ -6\%$		

- The scale uncertainties @ NLO are still sizeable (especially for y_t^2 , where they are within ~60%).
- The **bbH background rate** is **comparable** with the **SM HH signal**.
- The ggF 5FS NNLOPS simulation provides bbH cross-sections larger by a factor ~2 w.r.t. our 4FS bbH @ NLO prediction.
 - Could be traced back to the $g \rightarrow bb$ splittings in the PS.

- When turning these off, the ggF 5FS NNLOPS rates drops to half its nominal prediction. — More details in the next slides.

<u>JHEP 09 (2023) 179</u>

-
$$y_b^2 = +50\%$$
.
- $y_t^2 = +150\%$.

• The impact of the PS (Pythia8 or Herwig7) on the bbH NLO rates is within ~10% (= subdominant w.r.t. the scale uncertainties!).

bbH as a background for HH

Differential distributions

ICHEP 2024

bbH as a background for HH

Comparison and combination with inclusive NNLOPS prediction

- The bbH cross-sections provided by the ggF 5FS NNLOPS simulation are larger by a factor ~2 w.r.t. our 4FS bbH @ NLO prediction.
- This **discrepancy** is **recovered** if we **turn off** the $g \rightarrow bb$ splittings in the PS.
 - Ouestion: why does the g→bb splittings generate a large amount of events with 2 hard and central (p_T > 25 GeV, lηl < 2.5) b-jets?</p>
 - - Maybe soft wide-angle bottom quarks from g→bb
 splittings are clustered with other hard partons to form
 two hard b-jets (= pp→H + bb + jj events)?
 - Or maybe g→bb splittings are generating hard, wideangle bottom quarks?

ICHEP 2024

g→bb splittings populate region with high B-hadron invariant mass!

o g→bb splittings are generating events with hard B-hadrons!
o Probably bottom quarks from g→bb splittings are hard and well separated.

- Kinematics poorly described in soft / collinear approximation of the PS.
- The PS is acting outside of its validity range.

Comparison and combination with inclusive NNLOPS prediction

- The bbH cross-sections provided by the ggF 5FS NNLOPS simulation are larger by a factor ~2 w.r.t. our 4FS bbH @ NLO prediction.
- This **discrepancy** is **recovered** if we **turn off** the $g \rightarrow bb$ splittings in the PS.
 - **Question**: why does the $g \rightarrow bb$ splittings generate a large amount of events with **2 hard and central** ($p_T > 25$ GeV, $|\eta| < 2.5$) **b-jets**?
 - - Maybe soft wide-angle bottom quarks from g→bb
 splittings are clustered with other hard partons to form
 two hard b-jets (= pp→H + bb + jj events)?
 - Or maybe g→bb splittings are generating hard, wideangle bottom quarks?

ICHEP 2024

 $g \rightarrow bb$ splittings populate region with no light jets (in addition to the two b-jets from the fiducial cuts).

g→bb splittings are not contributing to pp→H + bb + jj events (i.e. N (light jets) = 2).

• Potential double-counting of $pp \rightarrow H + bb$ events (already covered by the Matrix-Element calculations in ggF NNLOPS 5FS simulation) from the **PS**.

Comparison and combination with inclusive NNLOPS prediction

- larger by a factor ~2 w.r.t. our 4FS bbH @ NLO prediction.
- - - - **two hard b-jets** (= $pp \rightarrow H + bb + jj$ events)?
 - angle bottom quarks?

ICHEP 2024

bbH as a background for HH

Impact of new bbH modeling for HH searches

Question: what is the **impact** of the **new bbH modeling** from the bbH @ NLO (4FS) + PS for the **HH searches**?

- **1. bbH** @ NLO (4FS) rates $\approx 0.5 \times \text{ggF}$ NNLOPS (5FS) rates. **Rates** of the *bbH* background from the two analyses \approx **halved**.
- **100% uncertainty** on ggF + bb bkg. **replaced** with **scale uncertainties** for **bbH** @ NLO (4FS) in fid. region (\approx 50%)

Uncertainty on the *bbH* background **≈ halved**!

Impact of rates and uncertainties from *bbH* @ NLO + PS (4FS) on the upper limits on HH production & HH discovery significance.

	HH→bbγγ	HH→bk
Run 2	2%	5%
HL-LHC projection	10%	20%

- We have propagated the **new bbH rates** and **uncertainties** to **two HH searches** in the $bb\gamma\gamma$ and $bb\tau\tau$ channels.
 - Using full Run 2 ATLAS analyses as representative cases (= Phys. Rev. D 106 (2022) 052001 and JHEP 07 (2023) 040).

- **DTT**

Positive impact on upper limits on HH production & HH discovery significance.

Subtlety:

- The ggF NNLOPS (5FS) sample is also used to estimate the **bkg**. from single **Higgs + jets**, where light or c-jets are mistagged as b-jets.
- The new bbH @ NLO does not cover this!
- For this exercise, we **only rescaled** the **true b-jet contribution** (≈ 80% of the ggF NNLOPS estimation).

Summary

• Single Higgs boson production + bb (bbH) is an irreducible background for the most sensitive HH searches (= all involving at least one $H \rightarrow bb$ decay).

Current predictions adopted by ATLAS rely on the inclusive ggF NNLOPS (5FS) sample, and assign a 100% uncertainty.

- - Simulated both the y_b^2 and the y_t^2 contributions using MadGraph5_aMC@NL0.
 - Large NLO corrections (especially for the yt² case).
 - Still sizable scale uncertainties @ NLO, especially for the y_t^2 contribution (= +58%_{-34\%}).

 We compared the new bbH @ NLO simulation (4FS) with the current ggF NNLOPS (5FS) sample. The **rates** from the **ggF NNLOPS (5FS)** prediction appear to be **largely influenced** by the **g→bb splittings in the PS** (= probably acting outside of its validity range!).

as representative cases).

- Propagating **lower rates** and **smaller uncertainties**.
 - the luminosity.

• We studied the bbH process @ NLO (within the 4FS) + matching to PS in a fiducial region targeting the HH phase space.

• We estimated the **impact** of the new bbH @ NLO (4FS) predictions to HH searches (using HH \rightarrow bbyy and HH \rightarrow bbtt analyses

- 2% - 20% improvement on upper limits on HH cross-section / HH discovery significance, depending on the HH channel and

bbH as a background for HH

Thank you for your attention!

The bbH background for HH searches

The most sensitive HH channels all involve the $H \rightarrow bb$ decay.

bbH background is **not negligible** w.r.t. the **SM HH signal**! Example of ATLAS Run 2 HH→bbyy search: bbH background comparable with SM HH **signal** in **most sensitive analysis categories** (= High Mass 3 and Low Mass 4).

ATLAS Run 2 $HH \rightarrow bb\gamma\gamma$ search (<u>JHEP 01 (2024) 066</u>)

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3
SM $HH(\kappa_{\lambda} = 1)$ signal	$0.26^{+0.03}_{-0.04}$	$0.194^{+0.021}_{-0.032}$	$0.84^{+0.10}_{-0.14}$	$0.048^{+0.007}_{-0.008}$	$0.038^{+0.004}_{-0.006}$	$0.039^{+0.004}_{-0.006}$
ggF	$0.25^{+0.03}_{-0.04}$	$0.188^{+0.021}_{-0.032}$	$0.81^{+0.10}_{-0.14}$	$0.046^{+0.007}_{-0.008}$	$0.036^{+0.004}_{-0.006}$	$0.037^{+0.004}_{-0.006}$
VBF [10 ⁻³]	$7.9^{+0.6}_{-0.5}$	$5.3_{-0.4}^{+0.5}$	29^{+4}_{-3}	$1.98^{+0.28}_{-0.24}$	$1.71\substack{+0.16 \\ -0.14}$	$1.96^{+0.21}_{-0.19}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	$2.5^{+0.4}_{-0.3}$	$1.81^{+0.25}_{-0.20}$	$6.2^{+0.8}_{-0.6}$	$5.0^{+1.2}_{-0.9}$	$3.8^{+0.7}_{-0.5}$	$3.7^{+0.7}_{-0.6}$
ggF	$2.3^{+0.4}_{-0.3}$	$1.64^{+0.25}_{-0.19}$	$4.9^{+0.8}_{-0.6}$	$4.7^{+1.0}_{-0.8}$	$3.6^{+0.7}_{-0.6}$	$3.3^{+0.7}_{-0.5}$
VBF	$0.231^{+0.019}_{-0.017}$	$0.170^{+0.019}_{-0.017}$	$1.29^{+0.15}_{-0.14}$	$0.28\substack{+0.20 \\ -0.11}$	$0.23\substack{+0.23 \\ -0.12}$	$0.36^{+0.10}_{-0.08}$
Alternative VBF $HH(\kappa_{2V} = 3)$ signal	$0.23^{+0.04}_{-0.04}$	$0.20_{-0.04}^{+0.05}$	$3.8^{+0.7}_{-0.6}$	$0.03^{+0.04}_{-0.02}$	$0.03^{+0.06}_{-0.02}$	$0.048^{+0.023}_{-0.015}$
Single Higgs boson background	$1.5^{+0.5}_{-0.3}$	$0.48^{+0.21}_{-0.10}$	$0.57^{+0.25}_{-0.14}$	$1.72^{+0.31}_{-0.19}$	$0.53^{+0.08}_{-0.06}$	$0.29^{+0.14}_{-0.07}$
ggF	$0.5^{+0.5}_{-0.2}$	$0.14^{+0.21}_{-0.09}$	$0.25^{+0.25}_{-0.12}$	$0.29^{+0.31}_{-0.15}$	$0.08^{+0.08}_{-0.04}$	$0.07\substack{+0.13\\-0.06}$
tĪH	$0.302^{+0.034}_{-0.032}$	$0.069^{+0.009}_{-0.008}$	$0.063^{+0.008}_{-0.007}$	$0.77^{+0.09}_{-0.08}$	$0.214^{+0.029}_{-0.026}$	$0.100^{+0.012}_{-0.012}$
ZH	$0.61\substack{+0.06\\-0.05}$	$0.174^{+0.020}_{-0.016}$	$0.188^{+0.035}_{-0.029}$	$0.49^{+0.05}_{-0.04}$	$0.149^{+0.028}_{-0.025}$	$0.069^{+0.033}_{-0.023}$
Rest	$0.17\substack{+0.08\\-0.04}$	$0.089^{+0.030}_{-0.016}$	$0.07^{+0.04}_{-0.02}$	$0.181\substack{+0.030\\-0.019}$	$0.089^{+0.016}_{-0.009}$	$0.046^{+0.007}_{-0.004}$
Continuum background	$11.3^{+1.5}_{-1.6}$	$3.2^{+0.8}_{-0.8}$	$2.8^{+0.8}_{-0.8}$	$37.2^{+2.9}_{-2.9}$	$10.8^{+1.5}_{-1.5}$	$4.4_{-1.0}^{+0.9}$
Total background	$12.8^{+1.6}_{-1.6}$	$3.7^{+0.9}_{-0.8}$	$3.4_{-0.8}^{+0.8}$	$38.9^{+2.9}_{-2.9}$	$11.3^{+1.5}_{-1.5}$	$4.7^{+0.9}_{-1.0}$
Data	12	4	1	29	8	5

Differential distributions

ICHEP 2024

The shape difference between the y_b² contribution and the y_t² **contribution** for $p_T(H)$ and $p_T(b_1)$ confirms that the y_t^2 contribution favors harder spectra for the Higgs boson and **bottom quarks**.

bbH as a background for HH

The bbH process @ NLO

The (fiducial) rates for the **bbH** process was computed **@ NLO** in the **4-flavor scheme (4FS)**, using MadGraph5_aMC@NLO.

- Including the $_{x}y_{b}^{2}$ and the $_{x}y_{t}^{2}$ contributions and the interference ($_{x}y_{b}y_{t}$).
- Heavy top approximation (HTL) adopted for the NLO corrections to the yt² component.

ICHEP 2024

JHEP 07 (2019) 054, N. Deutschmann, F. Maltoni, M. Wiesemann, M. Zaro, 2019.

= Massive bottom quarks.

Verified to be reliable from a comparison @ LO.

The relative contribution of the **interference** (\propto y_by_t) corresponds to 1 - y_b² - y_t².

bbH as a background for HH

The bbH process @ NLO + PS (4FS) in the phase space of $HH \rightarrow bbyy$

We present a simulation of bbH process @ NLO + matching to parton shower (PS) + dedicated <u>JHEP 09 (2023) 179</u> analysis targeting the HH phase space! \longrightarrow Using the HH \rightarrow bb $\gamma\gamma$ search as a representative case.

Cut	Contr.	Run	LO	NLO	$\delta\mu_{R,F}$	δQ_{sh}	$ \begin{array}{c c} \text{NNLOPS} \\ (y_t^2 \text{ LO}) \end{array} $	HH signal
	2	PY8	561	849	-20%	+0%		
	y_b^2	$PY8-\Delta$	F 01	848		+0% +0%	4867	
		HW7	561	851	+61%	+0% +0%		
No cut	2	PY8	655	1565	-35%	+0%		82.1
110 Cut	y_t	$PY8-\Delta$	055	1595		+0% +0%	$g \rightarrow b\overline{b}$	02.1
		HW7	655	1578	+46%	+0% +0%	2140	
		PY8	1217	2414	-29%	+0% +0%		
	sum	$PY8-\Delta$	1010	2443		+0% +0%		
		HW7	1216	2429				
	2		3.15	4.22	-15%	-4% +0%		
	$y_{\overline{b}}$	$PY8-\Delta$	0.50	4.75		-2% +8%	29.9	
		HW7	2.59	4.08	+58%	-12% +10%		
Fid. cuts	2	PY8	8.24	18.1	-34%	-7% +3%	_	22.7
I Id. Cutts	y_{t}	$PY8-\Delta$	6.00	19.2		-1% +4%	д → bb: 17.2	22.1
		HW7	6.83	16.6	+50%	-5% +10%		
	sum	PY8	11.4	22.3	+30% -30%	-6%		
		$PY8-\Delta$	0.40	23.9		-1%		
		HW7	9.42	20.7		607		
	2		3.11	4.15	-15%	-4% +0%		
	$ y_{\overline{b}}$	$PY8-\Delta$	0 50	4.69		-2% +8%		
		HW7	2.56	4.02	+60%	-13% +12%	22.3	
Fid. cuts	2		5.33	12.3	-34%	-8% +2%		15 7
$+ m^{\star}_{2b2\gamma} < 500 \mathrm{GeV}$	y_t sum	$PY8-\Delta$	4.01	12.8		-1% +5%	g→bb: 13.3	10.1
			4.31	11.3	+49%	-5% +12%		
			8.44	10.5	-29%	-7% +1%		
		P i 8- Δ	6 96	17.0		$^{-1\%}_{+6\%}$		
			0.80	10.0	+1370	-7% +9%		
	21 ²		2.71	3.05 1 11	-16%	$^{-4\%}_{+0\%}$		
	$ g_b$	$110-\Delta$	0 00	4.11 2.54		$^{-2\%}_{+8\%}$		
			2.22	5.79	+61%	$^{-15\%}_{+13\%}$	11.5	
Fid. cuts	a,2		2.32	6.05	-34%	$^{-9\%}_{+1\%}$	Ţ	2.84
$+ m_{2b2\gamma}^{2} < 350 \mathrm{GeV}$	g_t	HW7	1.99	5.42		$^{+0\%}_{+5\%}$	$g \rightarrow bb$	
		DV9	1.00	0.40	+44%	$^{-3\%}_{+12\%}$	6.82	
	sum	DVO A	0.05	9.40	-27%	$^{-7\%}_{+0\%}$		
	Sum	Γ 10- Δ	1 10	10.Z		$^{+0\%}_{+6\%}$		
		FI VV /	4 10	A 97		0,0		

ICHEP 2024

Fiducial cross-sections (before cuts and in m_{2b2v}* categories)

selection).

- After applying the fiducial cuts, the bbH cross-section drops of a factor ~100! - In the fiducial region, the **bbH background rate** is **comparable** with the **SM** HH signal, and becomes **dominant** in the $m_{2b2y}^* < 350$ GeV category.

• The bbH rates were evaluated also **before the fiducial cuts**, and in **three** categories, based on cuts on the m_{2b2y}* variable (on top of the fiducial

 $m_{2b2\gamma}^{*} < \infty$, $m_{2b2\gamma}^{*} < 500$ GeV, and $m_{2b2\gamma}^{*} < 350$ GeV.

• The **bbH cross-section changes** substantially **depending on the cuts**!

• The relative contributions of the y_b^2 and y_t^2 components changes with the cuts. The y_b^2 contribution is subleading w.r.t y_t^2 in all categories, except in the $m_{2b2v}^* < 350$ GeV category, where the two contributions are similar.

The bbH process: the state of the art

References (<u>TWiki</u> and ongoing work)

- Higgs radiation off bottom quarks at the Tevatron and the LHC [S. Dittmaier, M. Kramer, M. Spira, arXiv:hep-ph/0309204]
- <u>0311067</u>
- Higgs boson production in bottom quark fusion at next-to-next-to-leading order [R. V. Harlander, W. B. Kilgore, arXiv:hep-ph/0304035]
- Higgs production in bottom-quark fusion in a matched scheme [S. Forte, D. Napoletano, M. Ubiali, <u>arXiv:1508.01529</u>].
- Higgs production in bottom-quark fusion: matching beyond leading order [S. Forte, D. Napoletano, M. Ubiali, <u>arXiv:1607.00389</u>]
- Matched predictions for the bbH cross section at the 13 TeV LHC [M. Bonvini, A. S. Papanastasiou, F. J. Tackmann, arXiv:1605.01733]
- Higgs boson production in association with b-jets in the POWHEG BOX [B. Jager , L. Reina, D. Wackeroth, arXiv:1509.05843]
- Simulating b-associated production of Z and Higgs bosons with SHERPA [F. Krauss, D. Napoletano, S. Schumann, arXiv:1612.04640]
- Top-Yukawa contributions to bbH production at the LHC [N. Deutschmann, F. Maltoni, M. Wiesemann, M. Zaro, arXiv:1808.01660]

• Exclusive Higgs boson production with bottom quarks at hadron colliders [S. Dawson, C. B. Jackson, L. Reina, D. Wackeroth, arXiv:hep-ph/

 Resummation and matching of b-quark mass effects in bbH production [M. Bonvini, A. S. Papanastasiou, F. J. Tackmann, arXiv:1508.03288] Higgs production in association with bottom quarks. [M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, P. Torrielli, arXiv:1409.5301] NNLO+PS predictions for Higgs production through bottom-quark fusion [C. Biello, A. Sankar, M. Wiesemann, G. Zanderighi, arXiv:2407.08864]

