

Pramod Sharma¹

Collaborators: Biswajit Das², Ambresh Shivaji¹

1. IISER Mohali (India), 2. IMSc Chennai (India)

19 July, 2024

- 1. Role of angular observables in probing anomalous *HZZ* couplings at an electron-proton (*ep*) collider
- 2. NLO QCD corrections to single Higgs production at *ep* collider

1. Role of angular observables in probing anomalous *HZZ* couplings at an electron-proton (*ep*) collider

Central point \rightarrow New physics

Uncertainty < 10% in Higgs to gauge boson couplings

$$\begin{split} \Gamma^{\mu\nu}_{HVV}(q_1,q_2) &= g_V m_V \kappa_V g^{\mu\nu} \\ &+ \frac{g}{m_W} [\lambda_{1V}(q_1^{\nu} q_2^{\mu} - g^{\mu\nu} q_1.q_2) \\ &+ \lambda_{2V}(q_1^{\mu} q_1^{\nu} + q_2^{\mu} q_2^{\nu} - g^{\mu\nu} q_1.q_1 - g^{\mu\nu} q_2.q_2) \\ &+ \widetilde{\lambda}_V \ \epsilon^{\mu\nu\alpha\beta} q_{1\alpha} q_{2\beta}]. \end{split}$$

Ref[1]: Eur. Phys. J. C 79, 421 (2019)

 $V = W^{\pm}$ (CC) and Z (NC)

 q_1 & q_2 ightarrow momenta of off-shell gauge bosons

collider	СОМ	process	cross-
	energy		section
	(TeV)		(pb)
LHC	14	pp ightarrow hjj	3.7
ILC	1	$e^+e^- ightarrow e^+e^-h$	0.007
		$e^+e^- ightarrow u_e ar{ u}_e h$	0.21
CLIC	3	$e^+e^- ightarrow e^+e^-h$	6×10^{-4}
		$e^+e^- ightarrow u_e ar{ u}_e h$	0.50
LHeC	1.3	$e^- p ightarrow e^- hj$	0.016
		$e^- p ightarrow u_e h j$	0.088

LHeC: e^- energy 60 to 120 GeV with 7 TeV available proton energy

- Sufficiently large cross-section as compared to e⁺e⁻ collider for Higgs production
- Clean environment with the suppressed background as compared to pp collider

Observables

• $\Delta \phi_{12} \rightarrow \text{difference of azimuthal}$ angle of two particles 1 and 2

•
$$\alpha_{12} \rightarrow \text{angle between particle 1 and 2}$$

 $\alpha_{12} = \cos^{-1}(\hat{p}_1.\hat{p}_2)$

• $\beta_{123} \rightarrow$ angle between particle 3, and normal of the plane in 1 and 2

$$eta_{123} = cos^{-1}(\hat{p}_3.\hat{p}_{12})$$
, where $ec{p}_{12} = ec{p}_1 imes ec{p}_2$

 $\blacktriangleright \ \theta_1 \rightarrow$ angle of particle 1 with longitudinal direction

Observables

$$e^{-}(p_1) + q(p_2) \rightarrow e^{-}(p_3) + H(p_4) + q(p_5)$$

$$\begin{split} \mathcal{M} &= \widetilde{\lambda}_{Z} \mathcal{J}_{\mu} \epsilon^{\mu\nu\alpha\beta} q_{1\alpha} q_{2\beta} \mathcal{J}_{\nu} \\ &\propto \widetilde{\lambda}_{Z} \epsilon^{\mu\nu\alpha\beta} p_{1\mu} p_{2\nu} p_{3\alpha} p_{5\beta} \\ &= -\widetilde{\lambda}_{Z} (E_{1} p_{2z} + E_{2} p_{1z}) (\vec{p}_{3} \times \vec{p}_{5}) . \hat{z} \end{split}$$

 $\mathcal{L}_{odd} = rac{ ilde{\lambda}_Z}{4} Z^{\mu
u} \widetilde{Z}_{\mu
u} H$

And

$$\Delta \phi = \tan^{-1} \left[\frac{(\vec{p}_3 \times \vec{p}_5).\hat{z}}{\vec{p}_{T3}.\vec{p}_{T5}} \right]$$

$$(\vec{p}_3 \times \vec{p}_5).\vec{p}_4 = (p_{2z} - p_{1z})(\vec{p}_3 \times \vec{p}_5).\hat{z}$$

Numerical values in the brackets refer to the values of BSM parameters $(\lambda_{1Z}, \lambda_{2Z}, \tilde{\lambda}_Z)$.

Bounds on HZZ parameters

With respect to $|\Delta \phi|$ [3], constraints reduced by

$$\lambda_{2Z}, ilde{\lambda}_Z
ightarrow$$
 43%, 46%

Most stringent bound on individual couplings is given by

> $\lambda_{1Z} \rightarrow |\Delta \phi|$ $\lambda_{1Z} \rightarrow \alpha_{ej}$ $\tilde{\lambda}_Z \rightarrow \beta_{ejh}$

Ref.[3]: arXiv:2207.03862

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

λz

For E_e=60 GeV, E_e=7 TeV, L=1 ab⁻¹, Δχ²=4.0

Asymmtery in $\Delta \phi$

 $\Delta \phi \rightarrow [-\pi,\pi] \implies$ more differential information than $|\Delta \phi|$

NC process

CC process

2. Higher order corrections to single Higgs production at ep collider

Motivation: Precision

No automation for higher order correction for ep collision!

2. Higher order corrections to single Higgs production at ep collider

Motivation: Precision

No automation for higher order correction for ep collision!

QCD correctons

Tree level

Virtual corrections

Real Corrections

CC process:

NC process:

Coupling Order :

 $\mathcal{M}^B \sim \mathcal{O}(g^3_w), \quad \mathcal{M}^V \sim \mathcal{O}(g^2_s g^3_w), \quad \mathcal{M}^R \sim \mathcal{O}(g_s g^3_w).$ $\implies \mid \mathcal{M} \mid_{m}^{2} \sim \mid \mathcal{M}^{B} \mid^{2} + 2.Re[\mathcal{M}^{B}.\mathcal{M}^{V^{*}}], \quad \mid \mathcal{M} \mid_{m+1}^{2} \sim \mid \mathcal{M}^{R} \mid^{2}$

$$\therefore \sigma^{\mathsf{T}} = \sigma^{\mathsf{B}}(\alpha_{\mathsf{w}}^3) + \sigma^{\mathsf{V}}(\alpha_{\mathsf{w}}^3\alpha_{\mathsf{s}}) + \sigma^{\mathsf{R}}(\alpha_{\mathsf{w}}^3\alpha_{\mathsf{s}})$$

Amplitude computation :

- Spinor helicity formalism is used to compute the matrix element.
- Virtual amplitude is calculated in t'Hooft-Veltman (HV) regularization scheme where only the loop part has been computed in *d*-dimension, and the rest part has been computed in 4-dimension.

Virtual Amplitude :

$$\mathcal{M}^{V} = \frac{\alpha_{s}}{2\pi} \cdot \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \cdot C_{F} \cdot \left(\frac{\mu^{2}}{t}\right)^{\epsilon} \cdot \left\{-\frac{1}{\epsilon^{2}} - \frac{3}{2\epsilon} - 4 + \mathcal{O}(\epsilon)\right\} \times \mathcal{M}^{B}$$

The phase-space integral is being done with the Monte-Carlo package called AMCI. The package AMCI is based on the VEGAS algorithm.

Real corrections

$$egin{aligned} (1,2):&q(p_a)V^* o q'(p_1)+g(p_2)\ (3,4):&g(p_a)V^* o q'(p_1)+q(p_2) \end{aligned}$$

$$\frac{1}{p_1.p_2} = \frac{1}{E_1 E_2 (1 - \cos\theta_{12})}$$

Soft divergence: $E_2 \rightarrow 0$, Collinear divergence: $\theta_{12} \rightarrow 0$ By KLN theorem

$$d\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V$$

Real corrections

$$egin{aligned} (1,2):&q(p_a)V^* o q'(p_1)+g(p_2)\ (3,4):&g(p_a)V^* o q'(p_1)+q(p_2) \end{aligned}$$

$$\frac{1}{p_1.p_2} = \frac{1}{E_1 E_2 (1 - \cos\theta_{12})}$$

Soft divergence: $E_2
ightarrow 0$, Collinear divergence: $heta_{12}
ightarrow 0$

$$d\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V + \int_m d\sigma^C$$

Dipole substraction scheme

$$d\sigma^{A} = \sum_{i=1}^{4} d\sigma^{A}_{i}$$

Ref: Catani & Seymour, arXiv:hep-ph/9605323

Dipole Subtraction scheme

$$\int_{m+1} d\sigma^A + \int_m d\sigma^C = \int d\sigma^B . I(\epsilon) + \text{finite remnant}$$

The insertion operator:

$$I(\epsilon) = \frac{\alpha_s}{2\pi} \cdot \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \cdot 2C_F \cdot \left(\frac{\mu^2}{t}\right)^{\epsilon} \cdot \left\{\frac{1}{\epsilon^2} + \frac{3}{2\epsilon} + 5 - \frac{\pi^2}{2} + \mathcal{O}(\epsilon)\right\}$$

- ► This I-term cancels all IR poles $(\frac{1}{\epsilon^2}, \frac{1}{\epsilon})$ from $d\sigma^V$.
- These dipole terms exhibit the same singular behavior as dσ^R in collinear and soft regions.
- ► There is also collinear-subtraction counterterm $(d\sigma^{C})$ which gives the finite remnant after leftover collinear singularities absorbed in PDF.

Input parameters and Scale choice

Input parameter:

$$\begin{split} {\rm M}_W &= 80.379 \; {\rm GeV}, \quad \Gamma_W = 2.085 {\rm GeV} \\ {\rm M}_Z &= 91.1876 \; {\rm GeV}, \quad \Gamma_Z = 2.4952 \; {\rm GeV} \\ {\cal G}_\mu &= 1.16638 \times 10^{-5} {\rm GeV}^2, \quad \alpha = \frac{\sqrt{2}}{\pi} {\cal G}_\mu {\cal M}_W^2 \Big(1 - \frac{{\cal M}_W^2}{{\cal M}_Z^2}\Big) \end{split}$$

We consider the following dynamical scale for PDF evolution and running of strong coupling.

$$\mu_{R} = \mu_{F} = \mu_{0} = \frac{1}{3} \left(p_{T,\ell} + \sqrt{p_{T,H}^{2} + M_{H}^{2}} + p_{T,j} \right)$$

• We compute the scale uncertainty by varying $\mu_{R/F}$ in between $0.5\mu_0 \leq \mu_{R/F} \leq 2\mu_0$.

Results : NC and CC

Collider Energy : $E_e = 140$ GeV, $E_p = 7$ TeV (CME= 1.98 TeV)

Process	σ_0	σ_{qcd}^{NLO}	RE
$e^-p \rightarrow$	(fb)	(fb)	(%)
e Hj	$44.70^{+1.97\%}_{-1.86\%}$	49.08 ^{+0.41%} -0.53%	9.80
ν _e Hj	$214.31^{+2.30\%}_{-2.13\%}$	237.59 ^{+0.89%} -0.72%	10.86

Here $\sigma_{qcd}^{NLO} = \sigma^0 + \sigma^V + \sigma^I + \sigma^{PK} + \sigma^{DSR}$. Where DSR stands for dipole subtracted real emission.

The relative enhancement is defined as $RE = \left(rac{\sigma_{qcd}^{NLO} - \sigma_0}{\sigma_0}\right) \times 100.$

p_T distributions

Figure: $e^- p \rightarrow e^- Hj$ (left), $e^- p \rightarrow \nu_e Hj$ (right)

Invariant-mass distributions

Figure: $e^- p \rightarrow e^- Hj$.

Figure: $e^- p \rightarrow \nu_e H j$..

Summary and Outlook

- We have computed the QCD NLO correction to H production with one jet at ep collider.
- We found the NLO QCD correction around 10% at 1.98 TeV CME.
- We found that the invariant mass and the p_T distributions are harder with NLO-corrected results.
- We will implement our calculation to see the effects of NLO QCD corrections on angular observables sensitive to anomalous HVV coupling.

Back Up

p_T and η

Signal vs Background

Signal for CC (NC)
$$e^-
ho o
u_e(e^-)hj, h o bar{b}$$

where
$$j = u, c, d, s, g$$

Backgrounds for CC (NC)

- Irreducible background: $e^- p \rightarrow \nu_e(e^-) b \bar{b} j$
- Reducible background:
 - 1. $e^-p \rightarrow \nu_e(e^-)jjj$ Negligible for miss-tagging rates, c jet $\rightarrow 0.1$ light jet $\rightarrow 0.01$

2.
$$e^- p \rightarrow \nu_e(e^-) b \bar{b} j j$$

3. Photo production from $e^-p
ightarrow e^-b\bar{b}j$: $\gamma^*p
ightarrow b\bar{b}j$

 e^- missing in detector can account as missing transverse energy ($\not\!\!\!E_T$) of neutrino for CC process $e^-p \rightarrow \nu_e hj$, $h \rightarrow b\bar{b}$ and e^- should be very close to beam pipe $\implies p_T(e^-)$ very small \implies by minimum $\not\!\!\!E_T$ cut, photo production background is suppressed

Signal vs Background

Energy smearing of partons by $\frac{\Delta E}{E} = a/\sqrt{E} \oplus b$, where $x \oplus y = \sqrt{x^2 + y^2}$ a=0.6, b=0.04 for parton jets, a=0.12, b=0.02 for electron [2]

$$\begin{array}{l} \mbox{Cuts for NC} \\ p_{T}(e) > 20 \ GeV, p_{T}(j) > \\ 30 \ GeV, p_{T}(b) > 30 \ GeV \\ |M_{b\bar{b}} - m_{H}| < 15 \ GeV \\ |\eta_{e}| < 2.5, 2 < \eta_{j} < 5.0, 0.5 < \eta_{b} < \\ 4.0, M_{Hj} < 300 \ GeV \end{array}$$

Cuts for CC $p_T(j) > 30 \ GeV, p_T(b) > 30 \ GeV, \notin_T > 25 \ GeV$ $|M_{b\bar{b}} - m_H| < 15 \ GeV$ $1 < \eta_j < 5.0, -1 < \eta_b < 4.0, M_{Hj} < 250 \ GeV$

Process	Events at	events after
	generation	cuts
	level	
signal	534	76
e− b̄bj	$2.75 imes10^{6}$	161
e− bī̄jj	$6.3 imes10^5$	24
S/B	$0.02 imes 10^{-2}$	0.41

Process	Events at	events after
	generation	cuts
	level	
signal	3011	819
$\nu_e b \overline{b} j$	18883	30
ν _e b̄bjj	10985	38
S/B	0.1	12.0

Ref [2]: LHeC, FCC-he Study Group collaboration, J. Phys. G 48 (2021)

 χ^2 function for asymmetry in $\Delta\phi$ is given by,

$$\chi^{2}(\lambda_{i}) = \sum_{j} \left(\frac{\mathcal{O}_{j}^{BSM}(\lambda_{i}) - \mathcal{O}_{j}^{SM}}{\Delta \mathcal{O}} \right)^{2}$$

 $\Delta \mathcal{A}$ is the quadrsum of statistical and systematic uncertainties. Statistical uncertainity for asymmetry is given as,

$$\Delta \mathcal{A}_{stat} = \sqrt{\frac{1 - \mathcal{A}_{SM}^2}{\sigma_{SM}.L}}.$$
 (1)

UV renormalisation

Lagrangian for 3-point interaction

$${\cal L}=ar\psi {\cal A}_\mu \gamma^\mu ({\cal C}_V+{\cal C}_A \gamma^5)\psi$$

 $\psi=\sqrt{Z_\psi}\psi_R$ where $Z_\psi=1+\delta_\psi$

Counter term Lagrangian

$$\mathcal{L} = \delta_{\psi} \bar{\psi}_{R} A_{\mu} \gamma^{\mu} (C_{V} + C_{A} \gamma^{5}) \psi_{R}$$

counter term
$$\delta_\psi = rac{lpha}{4\pi}.C_F\left(rac{1}{\epsilon_{UV}}-rac{1}{\epsilon_{IR}}
ight)$$

$$\Gamma^{\mu} \equiv \left\{ rac{2}{\epsilon_{IR}^2} + rac{4}{\epsilon_{IR}} - rac{1}{\epsilon_{UV}} + 10 - \pi^2 + \mathcal{O}(\epsilon)
ight\}$$

$$\Gamma^{\mu}_{R} = \Gamma^{\mu} + \Gamma^{\mu}_{CT}$$