

Measurements of Higgs boson coupling properties to bottom quarks and charm quarks with the ATLAS detector

Francesco Armando Di Bello, U. Di Genova and INFN ICHEP 2024, on behalf of the ATLAS Collaboration

The Yukawa couplings to b- and c-quarks

- Probing the Yukawa couplings in the quark sector is a milestone for the LHC physics programme
- Measurements of the Yukawa couplings to bottom is reaching precision era!
- Growing interest from the community towards the second generation, i.e. the charm-Yukawa. Main question is: is this accessible at the LHC?

Overview of the searches sensitive to Yb

- A rich experimental investigation for a challenging final state
- All main production mechanisms are being studied, inclusively, differentially (STXS), fully fiducially

*NB: tH/ttH discussed in details in a separate talk: dedicated talk

Overview of Yc constraints

- Is it possible to measure this in the lifetime of LHC?
- Complementary approaches, with different size on assumptions, needed.
 e.g on the presence of BSM
- Summary given yesterday @ ICHEP

Direct constraints

Sensitivity is far from an evidence of Yc <u>EPJC10052</u>

Experimental ingredient: the identification of b- and c-jets

- Most of the results based on the DL1r tagger, a deep neural network that for each jet outputs the probability of being originated by a b-, c- or light-quarks
- b- and c-tagging working point obtained orthogonally
- Dedicated calibrations performed in these working points (see backup). Calibration precision O(10%) for c-jets and O(3%) for b-jets

NB: Example, used for the VH analysis

A new result from V(lep)H(bb/cc)

- A new results based on a simultaneous re-analysis of the VH(bb) and VH(cc) analyses
- V=Z/W bosons, split into 0, 1, and 2 muons, electrons or taus
- Analysis also split between resolved (small-R jets, R = 0.4) and boosted (large-R jets, R=1.0), and number of additional jets

Let's start from the end...

٠

- New Legacy V(led)H(bb/cc) improves and combine previous results: V(lep)H(cc), V(lep)H(bb), boosted V(lep)(Hbb)
- Significant improvements and changes to the analysis in both: VH(bb) and VH(cc) analyses , main ones are related to:
 - 1. Better Flavour tagging (MV2 to DL1r <u>EPJC63,681</u>), and dedicated WPs optimizations
 - 2. Introduced BDT discriminant for VH(cc) and VH(bb) boosted (see backup)
 - 3. New MC samples JHEP08(2022) with much higher stat and dedicated treatment of "truth-tagging": ATLAS 2022-041
 - 4. Increased statistics of alternative generators using CARL, based on: 506.02169
 - 5. Inclusion of additional analysis regions, such as 75-150 pTV in 1L, improved mass resolution

VHbb also improved O(20%), and many others exciting results...

The V(lep)H(bb/cc) analysis in a nutshell

- Orthogonal b- and c-tagging selections applied to form the Higgs candidate and categorise the events into SRs and CRs
- Main backgrounds are Top, Z/W+jets. Need control over Z+heavy flav, Z+light jets etc... Other background are multi-jet, Diboson (also used as a standard candle)
- MC simulations used for the template, norm. factor from data, relative from and shape have dedicated uncertainties (prior derived from MC)
- Complex fit model, (~50) SRs and (~100) CRs defined by tagging and kinematic requirements, ~50 norm. factor to control backgrounds

H(bb) SR; H(cc) SRs

V+jets CR; Top CR

Higgs candidate jet 1

Channel	Region	BB	CTN CTCL	CTCT	BCT	C _L N
	High- ΔR CR	No	orm. Only			_
0-lepton	Top BC _T CR					_
	V + lf CR		Norm. Only			
	Low- ΔR CR	$BDT_{Low-\Delta R CR}$			-	
	High- ΔR CR	p_{T}^{V}	m_j	ı j 2		_
1-lepton	Top BC _T CR		_		$m_{j_1j_2}$	_
	V + lf CR		_			p_{T}^{V}
	High- ΔR CR	p_{T}^{V}	m_j	ı j 2		_
2-lepton	Top BC _T CR	_	Norm.	Only		_
	V + lf CR		_			p_{T}^{V}

*NB: discriminant variables used in fit for CRs

The diboson standard candle

- A BDT trained using VZ as signal, powerful test of the robustness of the analysis
- Similarly to the signal VH, VZ(bb/cc) is simultaneously extracted. Compatible with SM.
- Sensitivities:

WZ(bb): 6.4 (6.5) obs. (exp) *σ*. First observation ; ZZ(bb) greater than 10
 WZ(cc): 3.9 (2.7); ZZ(cc) 3.1 (4.2). First ATLAS measurement of VZ(cc) at 5 std. dev.

Z -> bb

0L, 2-ctag region

0L, 2-btag region

Z -> cc

Inclusive results of V(lep)H(bb/cc)

- Simultaneous extraction of VH(bb/cc). Sensitivities:
 - 1. WH(bb): 5.3 (5.5) obs (exp) ; ZH(bb): 4.9 (5.7) std. dev., VH(bb) around 15% precision
 - 2. VH(cc) limits at 95% CL is 11.2 (10.4), strongest observed limit to date

 $\mu_{VH}^{bb} = 0.91_{-0.14}^{+0.16} = 0.91 \pm 0.10 \text{ (stat.)}_{-0.11}^{+0.12} \text{ (syst.)}$ $\mu_{VH}^{cc} = 1.0_{-5.2}^{+5.4} = 1.0_{-3.9}^{+4.0} \text{ (stat.)}_{-3.5}^{+3.6} \text{ (syst.)}.$

Differential XSec measurement (STXS)

- Added a 75-150 region for WH, new bin at very high transverse momentum (pTV > 600 GeV)
- Improved ZH/WH correlation thanks to dedicated treatment of identified hadronic tau, also improved nJet correlations by harmonising pT cuts

Differential XSec measurement (STXS)

- Added a 75-150 region for WH, added different nJ region for ZH, new bin at very high transverse momentum (pTV > 600 GeV)
- Improved ZH/WH correlation thanks to dedicated treatment of identified hadronic tau, also improved nJet correlations by harmonising pT cuts

Coupling modifiers, kappa framework

• Results interpreted with coupling modifiers kb and kc (only decay parametrised), others fixed to 1

$$\mu_{VH}^{cc} = \frac{\kappa_c^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)} \qquad \qquad \mu_{VH}^{bb} = \frac{\kappa_b^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)}$$

• Previous extrapolation ATL-PHYS-PUB-2021-039 at HL-LHC estimated |kc| < 3 @ 95% CL, we are now with full RUN2 dataset at 4.2!

Conclusions

- An overview of the analyses sensitive to Yb and the quest to measure Yc in ATLAS have been summarised
- Main novel results is related to the V(lep)H(bb/cc) legacy analysis, which shows significant improvement:
 - First observation of VZ(cc) and WZ(bb), used as a cross-check for the analysis
 - Observation of WH(bb), improved STXS measurements in both granularity and precision, best results to date
 - Best observed limit up to date on VH(cc), significantly improved constraint on the direct charm-yukawa
 - Universality structure of b/c-coupling excluded Pat 3

Big thank you to the VH(bb/cc team)!

Backup

Systematic uncertainties

Source of uncertainty		σ_{μ}					
Source of un	certainty	$VH, H \rightarrow b\bar{b}$	$WH, H \rightarrow b\bar{b}$	$ZH, H \rightarrow b\bar{b}$	$VH, H \rightarrow c\bar{c}$		
Total		0.151	0.200	0.220	5.29		
Statistical		0.097	0.139	0.151	3.94		
Systematic		0.116	0.160	0.160	3.53		
Statistical un	certainties						
Data statistic	al	0.089	0.129	0.137	3.70		
$t\bar{t} \ e\mu$ control	region	0.009	0.002	0.020	0.06		
Background	floating normalisations	0.034	0.053	0.040	1.23		
Other VH flo	ating normalisation	0.007	0.013	0.007	0.24		
Simulation sa	amples size	0.023	0.034	0.030	1.61		
Experimenta	l uncertainties						
Jets		0.028	0.039	0.025	1.00		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.009	0.005	0.018	0.24		
Leptons		0.004	0.003	0.008	0.23		
	<i>b</i> -jets	0.020	0.016	0.023	0.30		
b-tagging	<i>c</i> -jets	0.013	0.020	0.010	0.73		
	light-flavour jets	0.006	0.010	0.004	0.67		
Pile-up		0.009	0.017	0.003	0.24		
Luminosity		0.006	0.007	0.006	0.08		
Theoretical a	nd modelling uncertaint	ies					
Signal		0.073	0.066	0.112	0.56		
Z + jets		0.039	0.018	0.079	1.76		
W + jets		0.055	0.087	0.027	1.41		
$t\bar{t}$ and Wt		0.018	0.033	0.018	1.03		
Single top qu	ark (s-, t-ch.)	0.010	0.019	0.003	0.15		
Diboson		0.032	0.040	0.048	0.51		
Multi-jet		0.006	0.011	0.005	0.57		

Post-fit plots from the VH(bb/cc) fit

• Post-fit plots of the 2-ctag SR with 150 <pTV< 250 GeV

Post-fit VHbb

Post-fit VHbb boosted

STXS correlations

21

A more detailed look at the fit region

A complex simultaneous fit over b- and c-tagging bins, ptV regions, and several CRs

NF factors

p_{T}^{V} region	num. jet	W + hf	W + mf	W+lf
[75, 150] CoV	2	1.09 ± 0.06	$ 1.20 \pm 0.03$	1.03 ± 0.04
[75,150] Gev	≥ 3	1.30 ± 0.07	1.16 ± 0.04	1.07 ± 0.05
[150 250] CoV	2	1.00 ± 0.05	1.31 ± 0.03	1.08 ± 0.03
[150,250] Gev	≥ 3	1.28 ± 0.07	1.31 ± 0.04	1.07 ± 0.04
[250 400] CoV	2	0.97 ± 0.08	1.35 ± 0.07	1.05 ± 0.03
[250,400] Gev	≥ 3	1.46 ± 0.12	1.32 ± 0.07	1.10 ± 0.04
$[400,600] { m ~GeV}$	-	1.49 ± 0.25		_
>600 GeV	-	2.03 ± 0.25		_

p_{T}^{V} region	num. jet	Z+hf	Z + mf	Z + lf
[75 150] CoV	2	1.20 ± 0.04	1.04 ± 0.04	1.12 ± 0.03
[75,150] Gev	≥ 3	1.49 ± 0.06	1.11 ± 0.05	1.12 ± 0.05
	$3/{\geq}3$	0.77 ± 0.03	_	_
[150 250] CoV	2	1.30 ± 0.04	1.08 ± 0.04	1.17 ± 0.02
[100,200] Gev	≥ 3	1.59 ± 0.07	$1.14\pm~0.05$	1.17 ± 0.04
	$3/{\geq}3$	0.80 ± 0.04	_	_
[250, 400] CoV	2	1.40 ± 0.07	1.31 ± 0.08	1.16 ± 0.03
[200,400] Gev	≥ 3	1.78 ± 0.09	1.32 ± 0.07	1.20 ± 0.04
	$3/{\geq}3$	0.74 ± 0.04	—	—
$>400 { m GeV}$	-	1.63 =	± 0.13	_

p_{T}^{V} region	\mid num. jet \mid	Top(bb)	Top(bq,qq)	Top $2L$
[75 150] CoV	2 $ $	1.02 ± 0.04	0.98 ± 0.05	1.05 ± 0.05
[75,150] Gev	3	0.97 ± 0.03	0.98 ± 0.03	0.98 ± 0.05
	2	0.89 ± 0.05	0.83 ± 0.04	1.07 ± 0.16
$[150, 250] { m ~GeV}$	3	0.91 ± 0.03	0.86 ± 0.03	0.05 ± 0.14
	4	0.97 ± 0.02	0.95 ± 0.03	0.95 ± 0.14
[250 400] CoV	2	0.78 ± 0.08	0.82 ± 0.05	
[250,400] Gev	3	0.83 ± 0.04	0.80 ± 0.03	1.10 ± 0.50
	4	0.93 ± 0.05	0.86 ± 0.04	
[400,600] GeV	-	0.83 =	E 0.05	-
>600 GeV	-	0.69 =	E 0.07	-

Truth tagging

truth tag note

Mass corrections

Selections of the H+c analysis

Table 4: Summary of selection and categorisation requirements.

Selection requirements					
Trigger	Di-photons trigger with isolation				
Photons	\geq 2 isolated, <i>tight</i> identification, $p_{\rm T}$ >25 GeV, $ \eta $ <2.37, excluding 1.37< $ \eta $ <152				
Relative $p_{\rm T}$	$E_{\rm T}^{\gamma}/m_{\gamma\gamma} > 0.35 \ (0.25)$				
Mass cut	$105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$				
Jets	$\leq 2, p_{\rm T} > 25 \text{ GeV}, \eta < 2.5$				
Jets & Photons	$\Delta R(j,\gamma_{1,2}) > 1$				
<i>c</i> -tagging	2 categories: $N_{c-\text{tag}} = 0 \text{ or } N_{c-\text{tag}} \ge 1$				

Samples of the VH analysis

Process	ME generator	ME PDF	PS and Hadronisation	UE tune	Cross-section order
Signal, mass set to 12	5 GeV and $b\bar{b}$ branching fi	raction to 58%			
$qq \rightarrow VH$	Роwнед Box v2 [54] + GoSam [55]+ MiNLO [66, 67]	NNPDF3.0NLO ^(★) [56]	Рутніа 8.245 [57]	AZNLO [58]	NNLO(QCD) ^(†) + NLO(EW) [59–65]
$gg \rightarrow ZH$	Powheg Box v2	NNPDF3.0NLO (*)	Рутніа 8.245	AZNLO	NLO+ NLL [68–72]
Top quark, mass set to	o 172.5 GeV				
$t\bar{t}$ s-chan. single top t-chan. single top Wt	Powheg Box v2 [73] Powheg Box v2 [76] Powheg Box v2 [76] Powheg Box v2 [79]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [74] A14 A14 A14 A14	NNLO+NNLL [75] NLO [77] NNLO [78] Approx. NNLO+NNLL [80]
Vector boson + jets					
V+ jets	Sherpa 2.2.11 [82-84]	NNPDF3.0NNLO	Sherpa 2.2.11 [85, 86]	Default	NNLO [81]
Diboson					
$\begin{array}{c} qq \rightarrow VV \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.11 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.11 Sherpa 2.2.2	Default Default	NLO ^(‡) NLO ^(‡)

Scale-factors

Previous overlay plot on kb-kc

Migration matrix

BDT inputs

Table 2: Variables used for the mutivariate discriminante in each of the channels. The \checkmark symbol indicates the inclusion of a variable. The BDT_{Low- $\Delta R CR}$ uses the same variables as the 1-lepton resolved Hbb category as described in the text.</sub>

	$VH, H \rightarrow b\bar{b}, c\bar{c}$		$VH, H \rightarrow b\bar{b}$			
Variable	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton
m _H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$m_{j_1 j_2 j_3}$	\checkmark	\checkmark	\checkmark			
$p_{\mathrm{T}}^{j_1}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}^{j_2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$p_{\mathrm{T}}^{\mathbf{j}_3}$				\checkmark	\checkmark	\checkmark
$\sum p_{\rm T}^{j_i}, i > 2$	\checkmark	\checkmark	\checkmark			
$bin_{D_{\text{DL1r}}}(j_1)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\operatorname{bin}_{D_{\mathrm{DL1r}}}(j_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	\checkmark
$E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark		\checkmark	\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			\checkmark			
$ \Delta \phi(m{V},m{H}) $	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$ \Delta y(\boldsymbol{V}, \boldsymbol{H}) $		\checkmark	\checkmark		\checkmark	\checkmark
$\Delta R(j_1, j_2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\min[\Delta R(j_i, j_1 \text{ or } j_2)], i > 2$	\checkmark	\checkmark				
N(track-jets in J)				\checkmark	\checkmark	\checkmark
N(add. small R-jets)				\checkmark	\checkmark	\checkmark
colour ring				\checkmark	\checkmark	\checkmark
$ \Delta\eta(m{j_1},m{j_2}) $	\checkmark					
$H_{\rm T}$ + $E_{\rm T}^{\rm miss}$	\checkmark					
m_{T}^W		\checkmark				
m _{top}		\checkmark				
$\min[\Delta\phi(\ell, j_1 \text{ or } j_2)]$		\checkmark				
p_{T}^{ℓ}					\checkmark	
$(p_{\mathrm{T}}^{\ell}-E_{\mathrm{T}}^{\mathrm{miss}})/p_{\mathrm{T}}^{V}$					\checkmark	
$m_{\ell\ell}$			\checkmark			
$\cos heta^*(\ell^-, V)$			\checkmark			\checkmark

Background composition

