Higgs precision physics in electron–proton scattering at CERN

on behalf of the LHeC & FCC-eh Study Group

> **Prague, July 18th, 2024 ICHEP 2024**

The Future of the Large Hadron Collider

A Super-Accelerator with Multiple Possible Lives

World Scientific Connecting Great Minds

Contents

• Introduction:

- **E** Foreword
- New Theory Paradigms at the LHC
- Commissioning and the Initial Operation of the LHC

• The First Decade of the LHC:

- The Higgs Boson Discovery
- · Physics Results
- Heavy-Ion Physics at the LHC

· High Luminosity LHC:

Accelerator Challenges:

- HL-LHC Configuration and Operational Challenges
- Large-Aperture High-Field Nb3Sn Quadrupole Magnets for HiLumi
- Radio Frequency systems
- Beam Collimation, Dump and Injection Systems
- Machine Protection and Cold Powering

Physics with HL-LHC:

- Overview of the ATLAS HL-LHC Upgrade Programme
- The CMS HL-LHC Phase II Upgrade Program: Overview and **Selected Highlights**
- LHCb Upgrades for the High-Luminosity Heavy-Flavour Programme
- ALICE Upgrades for the high-Luminosity Heavy-Ion Programme
- Higgs Physics at HL-LHC
- High Luminosity LHC: Prospects for New Physics
	- Precision SM Physics
	- High Luminosity Forward Physics

Further Experiments and Facility Concepts:

- The FASER Experiment
- The SND@LHC Experiment
- Gamma Factory

• Future Prospects:

Electron-Hadron Scattering:

- An Energy Recovery Linac for the LHC
- Electron-Hadron Scattering Resolving Parton Dynamics
- Higgs and Beyond the Standard Model Physics
- A New Experiment for the LHC

The Filgh-Energy LHC:

- High Energy LHC Machine Options in the LHC Tunnel
- Physics at Higher Energy at the Large Hadron Collider
- HE-LHC Operational Challenges
- Vacuum Challenges at the Beam Energy Frontier
- LHC in the FCC Era:
- \blacksquare The LHC as FCC Injector
- About the Editors

e**h : ERL-**electrons **+ LHC [FCC-hh]**

 Using energy recovery in same structure: *sustainable* **technology with power consumption < 100 MW** *instead of 1 GW for a conventional LINAC.*

Beam dump: no radioactive waste!

 LHeC [FCC-eh] **L= 1000** [2000] **fb-1 in 10** [20] **years 'No' pile-up**: <0.1@LHeC; ~1@FCCeh

CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]; see talk by J D' Hondt 3

Concurrent **eh and hh operation with same running time!**

Genuine *Twin Collider* **idea holds for LHC and FCC-hh.**

Concurrent **eh and hh operation with same running time!**

Genuine *Twin Collider* **idea holds for LHC and FCC-hh.**

e**h : ERL-**electrons **+ LHC [FCC-hh]**

- **Using energy recovery in same structure:** *sustainable* **technology with power consumption < 100 MW** *instead of 1 GW for a conventional LINAC.*
	- **Beam dump: no radioactive waste!**

- **LHeC** [FCC-eh] **L= 1000** [2000] **fb-1 in 10** [20] **years**
	- **'No' pile-up**: <0.1@LHeC; ~1@FCCeh

<mark>CDR update</mark> J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]; see talk by J D' Hondt *A*

Total cross sections

(LO QCD CTEQ6L1 M_H =125 GeV)

** larger than HWW&HZZ xsecs at ee@3.5TeV, see backup

SM Higgs Production in DIS e**p**

Total cross sections

(LO QCD CTEQ6L1 M_H =125 GeV)

 \rightarrow In ep, direction of quark ('Fwd jet') is well defined.

•*Scale* dependencies of the LO calculations are about 5-10%. Tests done with MG5 and CompHep.

• **NLO QCD corrections are small**, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%. [J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:35-59,1993] [B.Jager, arXiv:1001.3789]

> **Theory well under control in ep! LHeC will deliver N3LO PDFs, mc to 3 MeV, mb to 10 MeV and** $\delta \alpha_s$ to \sim 0.1-0.2%

Rates and Geometric acceptances

Higgs in eh: *cut* **based results** Masahiro Tanaka, Masahiro Kuze,

Unpolarised (P_e =0) samples for E_e =60 GeV

Tokyo Tech 2017/2018 See also M Schott@Off-shell 2021, Hbb in ep using ATLAS software

Delphes ep-style detector

+ flat parton-level b-tagging for |η|<3.0 conservative HFL tagging: **b: 60%**, c: 10%, **udsg: 1%** CAL coverage |η|<5 LHeC [<6 FCC-eh]

Mass of 2 b-jets after event selection

 $H \rightarrow b b$: S/N>1 using *simple* **cuts** and *conservative* **HFL tagging**

ü **confirmed in multiple post CDR studies**

Plots are for 100 fb⁻¹ \approx 1 year of data w/o electron polarisation

Hunting for Precision Hbb : *BDT* based

Mass Mjj of pre-selected, *HFL untagged dijet candidates* at **Delphes** detector level

'Worst' case scenario plot : Photoproduction multijet background ('yp jjj' in purple) is assumed to be 100%! It has been modelled using the Weizsäcker-Williams approximation and alternatively with PYTHIA.

 \rightarrow addition of small angle electron taggers will reduce PHP to \sim 1-2%

Higgs in ep – clean S/B, no pile-up

Neural networks/BDT is crucial for precision

Kinematic Distributions at FCC-e**h**

Higgs decay particles (here to W*W), struck quark and scattered lepton are well separated in detector acceptance.

WW to Higgs to W* W to 4 jets

CC DIS Higgs production and decay to W*W gives direct access to g^4 _{HWW} assuming no NP in production and decay

 \rightarrow g_{HWW} with δ g_{HWW} = ¼ $\delta \mu / \mu$ (H \rightarrow W*W)

Study for **FCC-eh** at 3.5 TeV: Signal and Background generated by MG5+PYTHIA using BR(H \rightarrow WW)=21.5% and 67% for W \rightarrow jj decay: [arXiv:2007.14491]

 σ =100 fb \sim ~45% of σ (HWW)

- \triangleright passed thru FCC-eh Delphes detector
- \triangleright background processes dominated by CC DIS multijets, single top, H, W, $Z + jets$ (4th) + more jets from shower)
- \rightarrow various anti-kt R choices studied for the

resolved case: all 4 jets reconstructed

 \rightarrow optimal choice R=0.7

Note: more event categories and decay modes could be added *a la* LHC-style studies

Hà **WW* analysis strategy & results**

Very precise results expected from this channel only : $\delta g_{HWW} \simeq 0.5\%$ to 0.6%

NO mass requirements in combinatorics!

W^{*}, W and Higgs candidates **Reconstructed** W^{*}, W and Higgs, after jet combinatorics based on selecting at **least 5 jets** with $p_T > 6$ GeV and finding the Higgs candidate which has two jet pairs with min $\Delta \eta$; max $\Delta \eta$ between Higgs candidate and fwd jet; max $\Delta\varphi$ between Higgs candidate and E_T^{miss} or Higgs candidate and fwd jet \blacktriangleright then *passed to BDT for S/N optimisation*

- \checkmark Acceptance \times efficiency of 20%;
- \checkmark Purity of 68% that true forward jet is identified for pre-selected events;
- **HWW signal strengths of 1.9 to 2.5%** reached depending on background assumptions and pre-selection & BDT details.

SM Higgs Signal Strength uncertainties / in ep CERN-ACC-2018-0084

 $\delta \mu / \mu$ [%]

Charged Currents: ep \rightarrow vHX Neutral Currents: ep \rightarrow eHX

NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.

 E_e = 60 GeV LHeC E_p = 7 TeV L=1ab⁻¹ HE-LHC E_p = 14 TeV L=2ab⁻¹ FCC: E_p = 50 TeV L=2ab⁻¹

Stand-alone ep κ **Coupling Fits**

FCC-eh

Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method) see e.g. [arXiv:1608.07538]

Very high precision due to CC+NC DIS in clean environment in luminous, energy frontier ep scattering

Higgs @ HL-LHC, ee and FCC-eh

è **Combine the complementary measurements for best physics outcome!**

è *Only* **FCC-hh will be the machine to pin down HH and all rare decays!**

Higgs-inv.: 1.2% HH ~20%

Interplay EW/Higgs at future colliders

Couplings and correlations

J de Blas at FCC WS 2020

See also Talk by Sally Dawson@DIS21, p13 Higgs at future colliders; Tables in backup & [arXiV: 1905.03764]

eh resolves HWW -HZZ correlation, see line marked with X on left plot, and reduces further correlations

> Higgs measurements in the three collider modes ee, ep, pp are also important for theory development

Please take home … that …

- **A high energy ep collider like LHeC and FCC-eh could measure the dominant (Hbb, HWW, Hgg, HZZ, Hcc, HTT) Higgs couplings**, and ttH, **to high precision** [CC+NC DIS, no pile-up, clean final state..]
- **Higgs measurements in ep are** *selfconsistent,* **experimentally and theoretically, based on DIS cross sections with very small systematic uncertainties.**
- **Striking synergy of ep** (*HWW* and √s >~1 TeV) **and ee** (*HZZ* and √s of 250 to 350 GeV) **and pp for Higgs coupling measurements**, and to remove HZZ and HWW and further correlations!
- *Energy frontier* **ep would empower the physics potential of highest energy proton-proton colliders** (LHC, FCC-hh) **for Higgs** *(differential distributions!)* **through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille accuracy...**

Combining pp with ep, a very powerful Higgs facility can be established at the HL-LHC already in the 30ties and, later, at the FCC eh+hh.

Additional material

HL-LHC and LHeC

- Combined -

Table 9.5: Results of the combined HL-LHC + LHeC κ fit. The output of the fit is compared with the results of the HL-LHC and LHeC stand-alone fits. The uncertainties of the κ values are given in per cent.

Table 9.4: Predictions for Higgs boson production cross sections at the HL-LHC at $\sqrt{s} = 14 \text{ TeV}$ and its associated relative uncertainties from scale variations and two PDF projections, HL-LHC and LHeC PDFs, $\Delta \sigma$. The PDF uncertainties include uncertainties of α_{s} .

Consistency Checks of EW Theory

 \rightarrow similar tests possible using various cms energy CLIC machines, see e.g. [arXiv:1608.07538], however, in ep, we could perform them with one machine

$$
\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_W^2}{\kappa_Z^2}
$$

$$
\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W
$$

- \rightarrow Dominated by H \rightarrow bb decay channel precision
- \triangleright Very interesting consistency check of EW theory

Ø Values for cos2Θ given here are the PDG value as central value **0.777** and uncertainty from ep Higgs measurement prospects

→ Another nice test: **How does the Higgs couple to 3rd and 2nd generation quark?** b is down-type and c is up-type

$$
\frac{\sigma_{WW \to H \to c\bar{c}}}{\sigma_{WW \to H \to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}
$$

Double Higgs Production

Encouraging FCC-eh cut-based study; full Delphes-detector simulation; conservative HFL tagging \rightarrow full potential to be explored yet

FCC-eh g_{HHH} ~ 20% in ep only \rightarrow **go for ep+pp Higgs physics combination!**

cut-based 1 σ for SM hhh for E_e 60 (120)GeV and 10ab-1

 $+0.24(0.14)$ $-0.17(0.12)$

> Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

Here $g_{(\dots)}^{(i)}$, $i = 1, 2$, and $\tilde{g}_{(\dots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the hhh, hWW and hhWW anomalous vertices.

Note: Bands show the still allowed regions 24

Top Yukawa Coupling @ LHeC \bar{b} and $\frac{1}{\bar{b}}$

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335

$$
\text{SM:} \qquad \mathcal{L}_{\text{Yukawa}} = -\frac{m_t}{v}\bar{t}th - \frac{m_b}{v}\bar{b}bh,
$$

BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

 $\mathcal{L} = -\frac{m_t}{v}\bar{t} \left[\kappa \cos \zeta_t + i\gamma_5 \sin \zeta_t \right] t \, h$ $-\frac{m_b}{v_b} \bar{b} [\cos \zeta_b + i \gamma_5 \sin \zeta_b] b h.$

Observe/Exclude non-zero phase to better than 4σ

è With Zero Phase: Measure **ttH c**oupling with **17% accuracy at LHeC** è **extrapolation to FCC-eh: ttH to 1.7%**

Stand alone Branching for invisible Higgs

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

Values given in case of 2σ and L=1 ab-1

PORTAL to Dark Matter ?

- ü **Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using** *standard cut/BDT analysis techniques focused on a stand alone determination*
- \checkmark Full MG5+Delphes analyses, done for 3 c.m.s. energies $\hat{\to}$ very encouraging for a measurement of the **branching of Higgs to invisible in ep down to 5%** [1.2%] **for 1** [2] **ab-1 for LHeC** [FCC-eh]
- \checkmark A lot of checks done: We also checked LHeC \leftrightarrow FCC-he scaling with the corresponding cross sections (* results in table) : Downscaling FCC-eh simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1% \rightarrow all well *within uncertainties of projections of ~25%*

\rightarrow **further detector and analysis details have certainly an impact on results to enhance potential further**