Higgs precision physics in electron-proton scattering at CERN

Uta Klein

on behalf of the LHeC & FCC-eh Study Group

Prague, July 18th, 2024
ICHEP 2024

The Future of the Large Hadron Collider

A Super-Accelerator with Multiple Possible Lives

Editors:

Oliver Brüning

CERN, Switzerland

Max Klein

University of Liverpool, UK

Lucio Rossi

University of Milano, Italy & INFN, Italy

Paolo Spagnolo

INFN Pisa, Italy

430pp | September 2023

Hardcover 978-981-128-017-7 | US\$148 / £130

Visit https://doi.org/10.1142/13513

Contents

• Introduction:

- Foreword
- New Theory Paradigms at the LHC
- Commissioning and the Initial Operation of the LHC

• The First Decade of the LHC:

- The Higgs Boson Discovery
- Physics Results
- Heavy-Ion Physics at the LHC

• High Luminosity LHC:

Accelerator Challenges:

- HL-LHC Configuration and Operational Challenges
- Large-Aperture High-Field Nb3Sn Quadrupole Magnets for HiLumi
- Radio Frequency systems
- Beam Collimation, Dump and Injection Systems
- Machine Protection and Cold Powering

Physics with HL-LHC:

- Overview of the ATLAS HL-LHC Upgrade Programme
- The CMS HL-LHC Phase II Upgrade Program: Overview and Selected Highlights
- LHCb Upgrades for the High-Luminosity Heavy-Flavour Programme
- ALICE Upgrades for the high-Luminosity Heavy-Ion Programme
- Higgs Physics at HL-LHC
- High Luminosity LHC: Prospects for New Physics
- Precision SM Physics
- High Luminosity Forward Physics

Further Experiments and Facility Concepts:

- The FASER Experiment
- The SND@LHC Experiment
- Gamma Factory

• Future Prospects:

Electron-Hadron Scattering:

- An Energy Recovery Linac for the LHC
- Electron-Hadron Scattering Resolving Parton Dynamics
- Higgs and Beyond the Standard Model Physics
- A New Experiment for the LHC

The High-Energy LHC:

- High Energy LHC Machine Options in the LHC Tunnel
- Physics at Higher Energy at the Large Hadron Collider
- HE-LHC Operational Challenges
- Vacuum Challenges at the Beam Energy Frontier

LHC in the FCC Era:

■ The LHC as FCC Injector

About the Editors

Contributions@ICHEP2024:

Plenary: Panel discussion on Future Colliders

Project Overview:

The LHeC and FCC-eh experimental program

Detailed Talks:

The R&D Roadmap towards ERL-based particle physics colliders

Innovate for Sustainable Accelerating Systems (iSAS)

The LHeC: Basic Concepts and Layout of the Machine

A detector for future DIS at the energy frontier

<u>Proton and nuclear structure from EIC and HERA to LHeC and FCC-eh</u>

The general-purpose LHeC and FCC-eh high-energy precision programme: Top and EW measurements

High energy gamma-gamma interactions at the LHeC

<u>Higgs precision Higgs physics in electron–proton scattering at CERN</u>

eh : ERL-electrons + LHC [FCC-hh]

- Using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste!

Concurrent eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.

- **LHeC** [FCC-eh] **L= 1000** [2000] **fb**⁻¹ **in 10** [20] **years**
- 'No' pile-up: <0.1@LHeC; ~1@FCCeh

Concurrent eh and hh operation with same running time!

Genuine Twin Collider idea holds for LHC and FCC-hh.

eh : ERL-electrons + LHC [FCC-hh]

- Using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste!

- **LHeC** [FCC-eh] **L= 1000** [2000] **fb**⁻¹ **in 10** [20] **years**
- 'No' pile-up: <0.1@LHeC; ~1@FCCeh

CDR update J. Phys. G 48 (2021) 11, 110501 [arXiv:2007.14491]; see talk by J D' Hondt Δ

SM Higgs Production in DIS ep

→ In ep, direction of quark (Fwd jet) is well defined.

Total cross sections

(LO QCD CTEQ6L1 M_H =125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
P _e =-80%		
CC DIS: HWW	197 fb	1004 fb*
NC DIS: HZZ	24 fb	150 fb*

^{**} larger than HWW&HZZ xsecs at ee@3.5TeV, see backup

SM Higgs Production in DIS ep

Total cross sections

(LO QCD CTEQ6L1 M_H =125 GeV)

c.m.s. energy	1.3 TeV LHeC	3.5 TeV FCC-eh
P _e =-80% CC DIS: HWW NC DIS: HZZ	197 fb 24 fb	1004 fb 150 fb

- → In ep, direction of quark ('Fwd jet') is well defined.
- •Scale dependencies of the LO calculations are about 5-10%. Tests done with MG5 and CompHep.
- **NLO QCD corrections are small**, but shape distortions of kinematic distributions up to 20%. QED corrections up to -5%.

[J. Blumlein, G.J. van Oldenborgh, R. Ruckl, Nucl.Phys.B395:35-59,1993] [B.Jager, arXiv:1001.3789]

Theory well under control in ep!

LHeC will deliver N³LO PDFs, δm_c to 3 MeV, δm_b to 10 MeV and $\delta \alpha_s$ to ~0.1-0.2%

Rates and Geometric acceptances

100

- \rightarrow Tracking acceptance up to η =3.5 for Higgs decay products to ensure high acceptances of 57% at FCC-eh [70% at LHeC] for dominant decays
- \rightarrow Acceptance of muon spectrometer up to η =4 opens prospect to measure H $\rightarrow \mu\mu$ signal strength to ~6% at FCC-eh

Higgs in eh: cut based results

Unpolarised (P_e =0) samples for E_e =60 GeV

 $E_p=7 \text{ TeV}$ LHeC $E_p=50 \text{ TeV}$ FCC

·	σ (pb)	Nsample	N/σ(fb-1)
Signal CC:H->bb	0.113	0.2M	1760
CCjjj no top	4.5	2.6M	570
CC single top	0.77	0.9M	1160
CC Z	0.52	0.6M	1160
NC Z	0.13	0.15M	1140
PAjjj	41	14M	350

-p 30 .c.			
	σ (pb)	Nsample	N/ σ (fb ⁻¹)
Signal CC:H->bb	0.467	0.15M	321
CCjjj no top	21.2	1.95M	92
CC single top	9.75	1.05M	108
CC Z	1.6	0.15M	94
NC Z	0.33	0.15M	455
PAjjj	262	12.9M	49

Masahiro Tanaka, Masahiro Kuze, Tokyo Tech 2017/2018 See also M Schott@Off-shell 2021, Hbb in ep using ATLAS software

MadGraph and Delphes ep-style detector

+ flat parton-level b-tagging for |η|<3.0 conservative HFL tagging:
b: 60%, c: 10%, udsg: 1%
CAL coverage |η|<5 LHeC [<6 FCC-eh]

Mass of 2 b-jets after event selection

H→bb: S/N>1
using simple cuts
and conservative
HFL tagging

confirmed in multiple post CDR studies

Plots are for 100 fb⁻¹ ~ 1 year of data w/o electron polarisation

Note: plenty of single Z, W and top in ep

Higgs@LHeC: see also CDR & PRD.D82:016009,2010

Hunting for Precision Hbb: BDT based

'Worst' case scenario plot : Photoproduction multijet background ('γp jjj' in purple) is assumed to be 100%! It has been modelled using the Weizsäcker-Williams approximation and alternatively with PYTHIA.

→ addition of small angle electron taggers will reduce PHP to ~1-2%

Higgs in ep - clean S/B, no pile-up

Neural networks/BDT is crucial for precision

Higgs decay particles (here to W*W), struck quark and scattered lepton are well separated in detector acceptance.

WW to Higgs to W*W to 4 jets

(FCC)

CC DIS Higgs production and decay to W*W gives direct access to g⁴_{HWW} assuming no NP in production and decay

 \rightarrow g_{HWW} with δ g_{HWW} = $\frac{1}{4} \delta \mu / \mu (H \rightarrow W^*W)$

Study for **FCC-eh** at 3.5 TeV: [arXiv:2007.14491] Signal and Background generated by MG5+PYTHIA using BR(H→WW)=21.5% and 67% for W→jj decay:

 σ =100 fb ~45% of σ (HWW)

- passed thru FCC-eh Delphes detector
- background processes dominated by CC
 DIS multijets, single top, H, W, Z + jets (4th + more jets from shower)
- → various anti-kt R choices studied for the resolved case: all 4 jets reconstructed
 - → optimal choice R=0.7

Note: more event categories and decay modes could be added *a la* LHC-style studies

H > WW* analysis strategy & results

Very precise results expected from this channel only: $\delta g_{HWW} \simeq 0.5\%$ to 0.6%

Reconstructed W*, W and Higgs, after <u>jet combinatorics</u> based on selecting at **least 5 jets** with $p_T > 6$ GeV and finding the Higgs candidate which has two jet pairs with min $\Delta \eta$; max $\Delta \eta$ between Higgs candidate and fwd jet; max $\Delta \varphi$ between Higgs candidate and E_T^{miss} or Higgs candidate and fwd jet \Longrightarrow then passed to BDT for S/N optimisation

- ✓ Acceptance

 ✓ efficiency of 20%;
- ✓ Purity of 68% that true forward jet is identified for pre-selected events;
- ✓ HWW signal strengths of 1.9 to 2.5% reached depending on background assumptions and pre-selection & BDT details.

SM Higgs Signal Strength uncertainties $\delta\mu/\mu$ in ep

Charged Currents: ep \rightarrow vHX Neutral Currents: ep \rightarrow eHX

NC and CC DIS together over-constrain Higgs couplings in a combined SM fit.

Stand-alone ep k Coupling Fits

Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method) see e.g. [arXiv:1608.07538]

Note: Higgs in ePb for FCC-eh

Very high precision due to CC+NC DIS in clean environment in luminous, energy frontier ep scattering

For the near CERN future*: ep + pp SM Higgs Couplings & $\delta\sigma_{\text{Higgs}}$ (pp)

LHeC ES submission CERN-ACC-2018-0084 & CDR update

[arXiv:2007.14491]

pp+ep

■ HL-LHC ■ LHeC

Parameter	Uncertainty		
	HL-LHC	LHeC	HL-LHC+LHeC
κ_W	1.7	0.75	0.50
κ_Z	1.5	1.2	0.82
κ_g	2.3	3.6	1.6
κ_{γ}	1.9	7.6	1.4
$\kappa_{Z\gamma}$	10	_	10
κ_c	_	4.1	3.6
κ_t	3.3	_	3.1
κ_b	3.6	2.1	1.1
κ_{μ}	4.6	_	4.4
κ_{μ} $\kappa_{ au}$	1.9	3.3	1.3

For LHC: Precise Higgs in pp cross section prediction with LHeC input: $\delta\sigma(pp \rightarrow Higgs) = [0.3 (pdf) + 0.2 (\alpha_s)]\%$

^{*} see also backup slides & more on PDFs in F Giuli talk

Higgs @ HL-LHC, ee and FCC-eh

within kappa framework; statistical errors only

... to explore the synergy fully

FCC-eh

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀		FCC-ee		FCC-eh
Luminosity (ab ⁻¹)	3	2	0.5	5 @	+1.5 @	+	2
				240 GeV	365 GeV	HL-LHC	
Years	25	15	7	3	+4		20
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	3.8	6.3	2.7	1.3	1.1	SM
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.3	0.35	0.80	0.2	0.17	0.16	0.43
$\delta g_{\mathrm{HWW}}/g_{\mathrm{HWW}}$ (%)	1.4	1.7	1.3	1.3	0.43	0.40	0.26
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	2.9	1.8	2.8	1.3	0.61	0.55	0.74
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	6.8	1.7	1.21	1.18	1.35
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	1.8	2.2	3.8	1.6	1.01	0.83	1.17
$\delta g_{ m H au au}/g_{ m H au au}$ (%)	1.7	1.9	4.2	1.4	0.74	0.64	1.10
$\delta g_{ m Hμμ}/g_{ m Hμμ}$ (%)	4.4	13	n.a.	10.1	9.0	3.9	n.a.
$\delta g_{\mathrm{H}\gamma\gamma}/g_{\mathrm{H}\gamma\gamma}$ (%)	1.6	6.4	n.a.	4.8	3.9	1.1	2.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	2.5	_	_	_	_	2.4	ttH 1.7
BR _{EXO} (%)	SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.

- → Combine the complementary measurements for best physics outcome!
- → Only FCC-hh will be the machine to pin down HH and all rare decays!

Higgs-inv.: 1.2%

HH ~20%

Interplay EW/Higgs at future colliders

Couplings and correlations

J de Blas at FCC WS 2020

See also Talk by Sally Dawson@DIS21, p13 Higgs at future colliders; Tables in backup & [arXiV: 1905.03764]

eh resolves HWW-HZZ correlation, see line marked with X on left plot, and reduces further correlations

> Higgs measurements in the three collider modes ee, ep, pp are also important for theory development

Jorge de Blas

IP³ - Durham University

Please take home ... that ...

- A high energy ep collider like LHeC and FCC-eh could measure the dominant (Hbb, HWW, Hgg, HZZ, Hcc, Hττ)
 Higgs couplings, and ttH, to high precision [CC+NC DIS, no pile-up, clean final state..]
- Higgs measurements in ep are selfconsistent, experimentally and theoretically, based on DIS cross sections with very small systematic uncertainties.
- Striking synergy of ep (HWW and Vs >~1 TeV) and ee (HZZ and Vs of 250 to 350 GeV) and pp for Higgs coupling measurements, and to remove HZZ and HWW and further correlations!
- Energy frontier ep would empower the physics potential of highest energy proton-proton colliders (LHC, FCC-hh) for Higgs (differential distributions!) through high precision QCD measurements: flavour separated PDFs at N³LO, α_s to per mille accuracy...

a very powerful Higgs facility can be established at the HL-LHC already in the 30ties and, later, at the FCC eh+hh.

Additional material

HL-LHC and LHeC - Combined -

Parameter	Uncertainty		
	HL-LHC	LHeC	HL-LHC+LHeC
κ_W	1.7	0.75	0.50
κ_Z	1.5	1.2	0.82
κ_g	2.3	3.6	1.6
κ_{γ}	1.9	7.6	1.4
$\kappa_{Z\gamma}$	10	_	10
κ_c	_	4.1	3.6
κ_t	3.3	_	3.1
κ_b	3.6	2.1	1.1
κ_{μ}	4.6	_	4.4
$\kappa_{\mu} \ \kappa_{ au}$	1.9	3.3	1.3

Table 9.5: Results of the combined HL-LHC + LHeC κ fit. The output of the fit is compared with the results of the HL-LHC and LHeC stand-alone fits. The uncertainties of the κ values are given in per cent.

Process	σ_H [pb]	$\Delta \sigma_{\rm scales}$	$\Delta \sigma_{\mathrm{PDF}+lpha_{\mathrm{s}}}$	
			HL-LHC PDF	LHeC PDF
Gluon-fusion	54.7	5.4%	3.1%	0.4%
Vector-boson-fusion	4.3	2.1%	0.4%	0.3%
$pp \to WH$	1.5	0.5%	1.4%	0.2%
$pp \to ZH$	1.0	3.5%	1.9%	0.3%
$pp \to t\bar{t}H$	0.6	7.5%	3.5%	0.4%

Table 9.4: Predictions for Higgs boson production cross sections at the HL-LHC at $\sqrt{s} = 14 \,\text{TeV}$ and its associated relative uncertainties from scale variations and two PDF projections, HL-LHC and LHeC PDFs, $\Delta \sigma$. The PDF uncertainties include uncertainties of α_s .

Consistency Checks of EW Theory

→ similar tests possible using various cms energy CLIC machines, see e.g. [arXiv:1608.07538], however, in ep, we could perform them with one machine

$$\frac{\sigma_{WW \to H \to ii}}{\sigma_{ZZ \to H \to ii}} = \frac{\kappa_W^2}{\kappa_Z^2}$$

$$\frac{\kappa_W}{\kappa_Z} = \cos^2 \theta_W = 1 - \sin^2 \theta_W$$

- → Dominated by H→bb decay channel precision
- Very interesting consistency check of EW theory

> Values for cos²Θ given here are the PDG value as central value **0.777** and uncertainty from ep Higgs measurement prospects

→ Another nice test: How does the Higgs couple to 3rd and 2nd generation quark?

b is down-type and c is up-type

$$\frac{\sigma_{WW\to H\to c\bar{c}}}{\sigma_{WW\to H\to b\bar{b}}} = \frac{\kappa_c^2}{\kappa_b^2}$$

Double Higgs Production

Encouraging FCC-eh <u>cut-based</u> study; full Delphes-detector simulation; conservative HFL tagging → full potential to be explored yet

FCC-eh g_{HHH} ~ 20% in ep only

→ go for ep+pp Higgs physics combination!

cut-based 1σ for SM hhh for E_e 60 (120)GeV and $10ab^{-1}$

$$g_{hhh}^{(1)} = 1.00_{-0.17(0.12)}^{+0.24(0.14)}$$

Probing anomalous couplings within Higgs EFT: limits are obtained by scanning one of the non-BSM coupling while keeping other couplings to their SM values.

Here $g_{(\cdots)}^{(i)}$, i = 1, 2, and $\tilde{g}_{(\cdots)}$ are real coefficients corresponding to the CP-even and CP-odd couplings respectively, of the hhh, hWW and hhWW anomalous vertices.

Top Yukawa Coupling @ LHeC 5

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335

SM:
$$\mathcal{L}_{\text{Yukawa}} = -\frac{m_t}{v}\bar{t}th - \frac{m_b}{v}\bar{b}bh$$
,

$$\mathcal{L} = -\frac{m_t}{v}\bar{t}\left[\kappa\cos\zeta_t + i\gamma_5\sin\zeta_t\right]th$$
$$-\frac{m_b}{v}\bar{b}\left[\cos\zeta_b + i\gamma_5\sin\zeta_b\right]bh.$$

Enhancement of the DIS cross-section as a function of

phase

Observe/Exclude non-zero phase to better than 4o

→ With Zero Phase: Measure ttH coupling with 17% accuracy at LHeC → extrapolation to FCC-eh: ttH to 1.7%

Stand alone Branching for invisible Higgs

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech

Values given in case of 2σ and L=1 ab⁻¹

Delphes detectors	LHeC [HE-LHeC] 1.3 [1.8 TeV]	FCC-eh 3.5 TeV
LHC-style	4.7% [3.2%]	1.9%
'ep-style'	5.7%	2.6%
+BDT Optimisation	5.5% (4.5%*)	1.7% (2.1%*)

LHeC parton-level, cut based <6% [Y.-L.Tang et al. arXiv: 1508.01095]

PORTAL to Dark Matter?

- ✓ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques focused on a stand alone determination
- ✓ Full MG5+Delphes analyses, done for 3 c.m.s. energies → very encouraging for a measurement of the branching of Higgs to invisible in ep down to 5% [1.2%] for 1 [2] ab⁻¹ for LHeC [FCC-eh]
- ✓ A lot of checks done: We also checked LHeC ←→ FCC-he scaling with the corresponding cross sections (* results in table):
 Downscaling FCC-eh simulation results to LHeC would give 4.5%, while up-scaling of LHeC simulation to FCC-he would result in 2.1%
 → all well within uncertainties of projections of ~25%
- → further detector and analysis details have certainly an impact on results to enhance potential further