42nd International Conference on High Energy Physics 17–24 July 2024, Prague, Czechia

Determination of luminosity and of the inelastic hadronic Pb-Pb cross section with ALICE at the LHC

Guillermo Contreras Czech Technical University in Prague

On behalf of the ALICE Collaboration

Introduction to luminosity determination with van der Meer scans

At the LHC we are interested in measuring the cross section of specific processes (P)

$R_{\rm P} = \sigma_P \,\mathscr{L}$

and then normalise this rate to the amount of collisions per unit of time, over the dataset, which is called the luminosity

and then normalise this rate to the amount of collisions per unit of time, over the dataset, which is called the luminosity

LHC luminosity*

Luminosity per bunch pair

*presented for no crossing angle; formalism also valid for the general case

 $\mathscr{L} = f_{\text{LHC}} N_1 N_2 \int f_1(x, y) f_2(x, y) dx dy$

LHC luminosity*

*presented for no crossing angle; formalism also valid for the general case

Probability density distributions of the particles in each bunch in the transverse plane

where the **effective widths** are defined as:

*presented for no crossing angle; formalism also valid for the general case

*presented for no crossing angle; formalism also valid for the general case

Three luminometers, each a two-arm system

Three luminometers, each a two-arm system

Fast Cherenkov counters at fwd rapidities **Reference process** for pp, p-Pb and Pb-Pb: at least one hit in each side plus a vertex requirement from timing

Three luminometers, each a two-arm system

Fast scintillator hodoscopes at fwd rapidities **Reference process** for pp and p-Pb: at least one hit in each side **Reference process** for Pb-Pb (VOM): Total amplitude \approx 0-50% centrality

Fast Cherenkov counters at fwd rapidities **Reference process** for pp, p-Pb and Pb-Pb: at least one hit in each side plus a vertex requirement from timing

Three luminometers, each a two-arm system

A-side

Fast neutron calorimeters at beam rapidities **Reference process** for Pb-Pb: at least one hit on either side

T0 Fast Cherenkov counters at fwd rapidities **Reference process** for pp, p-Pb and Pb-Pb: at least one hit in each side plus a vertex requirement from timing

Fast scintillator hodoscopes at fwd rapidities **Reference process** for pp and p-Pb: at least one hit in each side **Reference process** for Pb-Pb (VOM): Total amplitude \approx 0-50% centrality

Determination of the effective widths

Beams moved in one direction, while keeping the other direction fixed

Determination of the effective widths Rate (Hz) TO 10³ Rate of a reference process measured 10² during 30 seconds at each step 10 ALICE-PUBLIC-2021-005 10⁻¹ -0.4 -0.6 Beams moved in one direction, while keeping the other direction fixed

Determination of the effective widths Rate (Hz) **T0** 10³ Rate of a reference process measured 10² during 30 seconds at each step 10 ALICE-PUBLIC-2021-005 10⁻¹ -0.4 -0.6 Beams moved in one direction, while keeping the other direction fixed

Corrections for parasitic charges (ghost, satellites), and intensity decay

DCCT (LHC), measures the total beam intensity fBCT (LHC) or BPTX (ATLAS) measure relative bunch intensities

 $\mathscr{L} = \frac{f_{\text{LHC}} N_1 N_2}{h_x h_y}$

Corrections for parasitic charges (ghost, satellites), and intensity decay

 $\mathscr{L} = \frac{f_{\text{LHC}} N_1 N_2}{h_x h_y}$

Corrections for parasitic charges (ghost, satellites), and intensity decay

Corrections for parasitic charges (ghost, satellites), and intensity decay

Numerical or model based integral

 $\mathscr{L} = \frac{f_{\text{LHC}} N_1 N_2}{h_x h_y}$

Corrections for parasitic charges (ghost, satellites), and intensity decay

Numerical or model

 $\mathscr{L} = \frac{f_{\text{LHC}} N_1 N_2}{h_x h_y}$

Corrections for beam-beam interactions, orbit drift,
hysteresis effects, absolute scale calibration (LSC)
based integral
$$h_{x,0} = \frac{\int R_{ref} (\Delta x, 0) \, dx}{R_{ref} (0, 0)}$$

Rates for different luminometer
Corrections for pile-up, satellites, beam-beam effects

Corrections for non-factorisation
Consistency across luminometers
$$\sigma_{ref} = \frac{R_{ref}(0,0) h_{x,0} h_{y,0}}{f_{LHC} N_1, N_2}$$

Corrections for parasitic charges (ghost, satellites), and intensity decay

Numerical or model based integral

DCCT (LHC), measures the total beam intensity fBCT (LHC) or BPTX (ATLAS) measure relative bunch intensities

Consistency checks: same cross section for all colliding bunch pairs in the scan, and across the two scans in the session

Corrections for parasitic charges (ghost, satellites), and intensity decay

Numerical or model based integral

DCCT (LHC), measures the total beam intensity fBCT (LHC) or BPTX (ATLAS) measure relative bunch intensities

Consistency checks: same cross section for all colliding bunch pairs in the scan, and across the two scans in the session

In addition: stability of the luminometers across the full data taking period

Luminosity determination for pp and Pb-Pb collisions with ALICE in LHC Run 2

ALICE-PUBLIC-2021-005

Summary of pp collisions at 13 TeV from 2016 to 2018

	Uncertainty	2016	2017	2018	Correlated?
		T0 V0	T0 V0	T0 V0	
	Statistical	0.05% 0.05%	0.07% 0.07%	0.05% 0.05%	No
	Bunch intensity				
	Beam current normalisation	0.5%	0.5%	0.4%	Yes
	Relative bunch populations	0.1%	0.3%	0.1%	No
	Ghost and satellite charge	< 0.1%	< 0.1%	< 0.1%	No
	Non-factorisation	0.5%	0.2%	0.4%	Yes
	Length-scale calibration	0.2%	0.3%	0.3%	No
	Beam-beam effects	0.3%	0.3%	0.3%	Yes
	Orbit drift	0.1%	0.1%	0.2%	No
	Magnetic non-linearities	0.1%	0.2%	0.2%	Yes
	Beam centring	< 0.1%	< 0.1%	0.1%	No
	Luminosity decay	0.5%	0.5%	0.3%	No
	Background subtraction	0.1% 0.6%	0.1% 0.8%	0.1% 0.7%	Yes
	Pile-up	0.1% < 0.1%	0.5%	0.2% < 0.1%	Yes
	Fit model	0.2%	0.6%	0.4%	Yes
	$h_x h_y$ consistency (T0 vs V0)	0.1%	0.4%	0.4%	No
	Bunch-by-bunch consistency	< 0.1% < 0.1%	0.1% 0.1%	0.1% 0.1%	No
	Scan-to-scan consistency	0.2% 0.1%	0.1% 0.1%	0.5% 0.5%	No
Main contribution to uncertainty	 Stability and consistency 	1.5%	2.3%	1.6%	No
	Total correlated	0.8% 1.0%	1.0% 1.2%	0.8% 1.0%	Yes
	Total uncorrelated	1.6% 1.6%	2.4% 2.4%	1.8% 1.8%	No
	Total	1.8% 1.9%	2.6% 2.7%	1.9% 2.1%	Partially
				·	
	Uncertainty from co	mbined sample sl	ightly better that	n 2%	
ALLCE DUDUC 2021 OOF					
ALICE-FUDLIC-ZUZI-005					

Poissonian log-likelihood

<u>JINST 19 (2024) 02, P02039</u>

Poissonian log-likelihood

Prob. of a trigger in a bunch crossing

mean number of triggers per bunch pair

mean number of triggers per bunch pair

$$R_{\rm ref}(\Delta x_i, \Delta y_i) = f_{\rm LHC} N_{1,i} N_{2,i} \frac{\sigma_{\rm ref}}{h_{x0} h_{y0}} f(\Delta x_i, \Delta y_i) = f_{\rm LHC} N_{1,i} N_{2,i} \frac{\sigma_{\rm ref}}{h_{x0} h_{y0}} f(\Delta x_i, \Delta y_i) = f_{\rm LHC} N_{1,i} N_{2,i} \frac{\sigma_{\rm ref}}{h_{x0} h_{y0}} f(\Delta x_i, \Delta y_i) = f_{\rm LHC} N_{1,i} N_{2,i} \frac{\sigma_{\rm ref}}{h_{x0} h_{y0}} f(\Delta x_i, \Delta y_i) = f_{\rm LHC} N_{1,i} N_{2,i} \frac{\sigma_{\rm ref}}{h_{x0} h_{y0}} f(\Delta x_i, \Delta y_i)$$

JINST 19 (2024) 02, P02039

Results for Pb-Pb collisions at 5.02 TeV

Main contributions to uncertainty

	Source	Uncertainty (%)
		ZED V0M
	Statistical	0.008 0.08
	$h_{x0}h_{y0}$ consistency (V0M vs ZED)	0.13
	Length-scale calibration	1
	Non-factorisation	1.1
	Bunch-to-bunch consistency	0.1
	Scan-to-scan consistency	1
	Satellite collisions	1.2
	Beam–gas and noise	0.3
	Bunch intensity	0.8
	Emittance variation	0.5
	Magnetic non-linearities	0.2
	Orbit drift	0.15
	Beam-beam deflection and distortion	0.1
	Fitting scheme	0.4
>	Total of visible cross section	2.4
	Stability and consistency	0.7
	Total of luminosity	2.5 2.5
		·

Uncertainty slightly above 2%

Total inelastic hadronic cross section in Pb-Pb collisions at 5.02 TeV

<u>JINST 19 (2024) 02, P02039</u>

<u>JINST 19 (2024) 02, P02039</u>

Uncertainties in centrality [1] definition from: Variations in the anchor point by ±1% Comparison of Glauber and Trento fits [1] <u>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.88.044909</u>

Uncertainties in centrality [1] definition from: Variations in the anchor point by ±1% Comparison of Glauber and Trento fits [1] <u>https://journals.aps.org/prc/abstract/10.1103/PhysRevC.88.044909</u>

Luminosity determination with ALICE in LHC Run 3

ALICE upgrades for Run 3

New detectors: Inner tracking sytem (ITS) Muon forward tracker (MFT) Fast interaction trigger (FIT)

ALICE upgrades for Run 3

New detectors: Inner tracking sytem (ITS) Muon forward tracker (MFT) Fast interaction trigger (FIT)

Improved detectors and systems: GEMs for TPC New electronics for several systems Continuous data taking

<u>JINST 19 (2024) 05, P05062</u>

<u>JINST 19 (2024) 05, P05062</u>

New detector (quartz Cherenkov radiators, MCP-PMT) More channels, larger rapidity coverage

Other new detectors being evaluated as luminometers

JINST 19 (2024) 05, P05062

JINST 19 (2024) 05, P05062

ALICE uses van der Meer scans to determine the luminosity

ALICE uses van der Meer scans to determine the luminosity

The total uncertainty is slightly below (above) 2% for pp (PbPb) collisions

ALICE uses van der Meer scans to determine the luminosity

The total uncertainty is slightly below (above) 2% for pp (PbPb) collisions

ALICE measured the total hadronic inelastic Pb-Pb cross section

ALICE uses van der Meer scans to determine the luminosity

The total uncertainty is slightly below (above) 2% for pp (PbPb) collisions

ALICE measured the total hadronic inelastic Pb-Pb cross section

In Run 3 ALICE features continuous readout, which expands the possibility of defining new reference processes

ALICE uses van der Meer scans to determine the luminosity

The total uncertainty is slightly below (above) 2% for pp (PbPb) collisions

ALICE measured the total hadronic inelastic Pb-Pb cross section

In Run 3 ALICE features continuous readout, which expands the possibility of defining new reference processes

The analysis of Run 3 scans is underway \rightarrow stay tuned!

