THE ITS3 DETECTOR AND PHYSICS REACH OF THE LS3 ALICE UPG RADE Felix Schlepper

On behalf of the ALICE Collaboration

Felix Schlepper

Looking at ITS2

ITS2 IB

Felix Schlepper

Non-sensitive material Silicon has 1/7 of total material budget **Non-uniformly distributed material** Staves overlapping, support and water

STAVE

cooling structure

Unable to be closer to the interaction point Mechanical constraints

FPC

Remove water cooling

➡ New processing chip (with lower power consumption) requiring air cooling

Remove circuit board

New technology integrating data, control and power distribution on a single chip

Remove mechanical support

New mechanical design

ITS3 replacement for ITS2 IB

Felix Schlepper

ITS3 material budget

ITS2 IB

Non-sensitive materials

Silicon has 1/7 of total material budget Non-uniformly distributed material

Staves overlapping, support, water cooling

ITS3 TDR: CERN-LHCC-2024-003

ITS3

Non-sensitive materials

Sillicon dominates

Uniformly distributed material

Only lightweight carbon foam and glue distributed on the edge of the sensitive area

ITS3 bending/interconnection procedure

BENT WAFER-SCALE SENSOR

ENGINEERING MODEL WITH SILICON DUMMY

7.5 mm

Chip development roadmap

MLR1 (Multi-reticle Layer Run 1)

First 65 nm process MAPS

 \rightarrow APTS, DPTS, CE65

Successfully qualified the 65 nm process for ITS3

ER1 (Engineering Run 1)

- First stitched MAPS
- \rightarrow MOSS, MOST
- Successfully qualified the large scale sensor design

ER2 (Engineering Run 2)

- ➡ ITS3 sensor prototype
- Design ongoing

ER3 ITS3 sensor production

APTS

- Analogue Pixel Test Structure DPTS
- Digital Pixel Test Structure **CE65**
- Circuit Exploratoire 65 nm MOSS
- Monolithic Stitched Sensor

MOST

Monolithic Stitched Sensor Timing

MLR1 selected testing results

Under the irradiation requirements of ITS3, and even under higher levels, the chip operates normally

G. A. Rinella et al., arXiv:2403.08952 G. A. Rinella et al., NIM-A 1056, 168589 (2023)

MLR1 selected testing results

Radiation hardness assessed

Under the irradiation requirements of ITS3, and even under higher levels, the chip operates normally **Spatial resolution and cluster size**

Evaluated for different levels of irradiation: spatial resolution not affected by irradiation, average cluster size slightly increases with irradiation

Excellent performances of the 65 nm technology have been established experimentally

Felix Schlepper

G. A. Rinella et al., arXiv:2403.08952 G. A. Rinella et al., NIM-A 1056, 168589 (2023)

Bent MAPS characterisation

Felix Schlepper

ALICE ICHEP 2024

No performance degradation observed when bending

consistent

Bent MAPS work

Spatial resolution of 5 µm consistent with flat ALPIDEs Efficiency > 99.99% for nominal operating conditions Inefficiency compatible with flat ALPIDEs

MLR1 chips (65 nm process) were also tested and the results were

ER1 MOSS

First stitched chips

- ➡ Full module on a single chip
- \rightarrow Wafer-scale (14 x 259 mm²), 6.72 million pixels

MOSS segmented into 10 repeated sensor units (RSU)

RSUs are divided into top and bottom half units with different pitch sizes

14 mm

ER1 MOSS selected testing results

Excellent efficiency and spatial resolution

ITS3 final wafer-scale sensor design

ITS3 TDR: CERN-LHCC-2024-003

ITS3 final wafer-scale sensor design

- ER2 test results

ITS3 TDR: CERN-LHCC-2024-003

Physics performance — Pb-Pb collisions

ITS Standalone

- \rightarrow Full simulation and FAT results agree for DCA_{xv} and DCA_z

Felix Schlepper

Differences due to more accurate material description in Full simulation and tracking model ITS-TPC matching recovers excellent impact parameter resolution at intermediate p_T **Twofold improvement in impact parameter resolution over ITS2**

Single Track Performance

Detailed description of geometry and material

Two independent simulation methods used ➡ Full simulation ➡ Fast simulation (FAT)

Physics performance — Heavy flavour

 Λ_C^+ reconstruction as an example for possible improvement Factor 10 improvement for S/B **Factor 4 improvement for the significance** Large three-prong combinatorial background Impact of deadzones negligible compared Can be better suppressed with improved primary and to the improvement over ITS2 secondary vertex reconstruction

Felix Schlepper

Summary and Outlook ITS3 — a bent wafer-scale monolithic pixel detector

ITS3 project is on track for installation in LS3

- Proved silicon bending
- Technology qualified
- ➡ Wafer-scale stitched MAPS

Technical Design Report approved

A twofold improvement in spatial resolution wrt. ITS2

Significant improvement in reconstructing heavy flavour hadrons

Analysis benefiting from ITS3

- Heavy flavour collectivity
- Thermal radiation via dielectron measurements
- And many more analyses...

ITS3 TDR: CERN-LHCC-2024-003

BACKUP

Table 2.1: ITS3 general parameters.Table 3.2: General requirements for the sensor ASIC design.Beampipe inner/outer radius (mm)16.0/16.5Beampipe inner/outer radius (mm)16.0/16.5Beampipe inner/outer radius (mm)10.0/16.5Beampipe inner/outer radius (mm)10.0/16.5Beampipe inner/outer radius (mm)10.019.2530.5Alter of a colspan="2">Alter of a colspan="2">Sili of Alter area (mar)Colspan="2">Colspan="2">Table 3.2: General requirements for the sensor ASIC design.Particle RateParticle RateParticle RateParticle RateDescint colspan="2">Sili con marking and the sensor ASIC design.Particle RateParticle Rate <th>TS3 – Se</th> <th>nsor A</th> <th>SIC</th> <th>design specifica</th> <th>ations</th>	TS3 – Se	nsor A	SIC	design specifica	ations
Beampipe inner/outer radius (mm)16.0/16.5IB Layer parametersLayer 0Layer 1Layer 2Radial position (mm)19.025.231.5Length (sensitive area) (nm)260260Pseudo-rapidity coverage ^a ± 2.5 ± 2.3 ± 2.0 Active area (cm ²)305407507Pixel sensors dimensions (mm ²)266 × 58.7266 × 97.8.3266 × 97.8.3Number of pixel sensors / layer22Material budget (% X ₀ / layer)0.07Silicon thickness (µm / layer) ≤ 50 Pixel sensity (mW/cm ²)40Pixel sensor pixel geneon radio rapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point ($z = 0$).ITS3 TDR: CERN-LHCC-2024-003ITS3 TDR: CERN-LHCC-2024-003ITS3 TDR: CERN-LHCC-2024-003Its content is content in the content in the content is content in the content in the content is content in the content in the content in the content is content in the content in the content is content in the content	Table 2.1: ITS3 general parameters.			Table 3.2: General requirements for the sensor ASIC design.	
IB Layer parametersLayer 0Layer 1Layer 2Radial position (mm)19.025.231.5Length (sensitive area) (mm)260260260Pseudo-rapidity coverage* ± 2.5 ± 2.3 ± 2.0 Active area (cm2)305407507Pixel sensors dimensions (mm2)266 × 58.7266 × 78.3266 × 97.8Number of pixel sensors / layer22Material budget (%X ₀ / layer)0.07Silicon thickness (µm / layer) ≤ 50 Pixel size (µm2) $O(20 \times 22.5)$ Power density (mW/cm2)40NtEL (1 MeV neq cm^{-2})10 ¹³ TID (kGray)10* The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point ($z = 0$).ITS3 TDR: CERN-LHCC-2024-003Numetric track originating from a collision Density, Peripheral RegionLouis 10 Layer 0Adation LoadReadiation LoadNumetric to a point ($z = 0$).ITS3 TDR: CERN-LHCC-2024-003Numetric to a point ($z = 0$).Layer 0Power Dissipation Density, Active RegionAdamine time colspan="2">Adamine time colspan=	Beampipe inner/outer radius (mm)	16.0/16.5		Particle Rate	
NIEL (1 MeV n_{eq} cm ⁻²)10 ¹³ TID (kGray)10* The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point (z = 0).Fraction of Pb-Pb interactions fully recorded, Layer 0> 99.9%Fraction of Pb-Pb interactions, Layer 0< 1 \times 10^{-3}Power BudgetITS3 TDR: CERN-LHCC-2024-003NIEL (1 MeV n_{eq} cm ⁻² Radiation LoadNIEL (1 MeV n_{eq} cm ⁻² ITS3 TDR: CERN-LHCC-2024-003NIEL (1 MeV n_{eq} cm ⁻² ITS3 TDR: CERN-LHCC-2024-003NIEL (1 MeV n_{eq} cm ⁻² Radiation LoadNIEL (1 MeV n_{eq} cm ⁻² TIDITS3 TDR: CERN-LHCC-2024-003NIEL (1 MeV n_{eq} cm ⁻² Power Dissipation Density, Active Region< 40 mW cm ⁻² Power Dissipation Density, Peripheral Region< 1000 mW cm ⁻² Power Dissipation Density, Peripheral RegionNIEL (10 ¹³ 1 MeV n_{eq} cm ⁻² TIDTotaget Operating TemperatureTotaget Operating Temperature	IB Layer parametersLayer 0Layer 1IRadial position (mm)19.025.2Length (sensitive area) (mm)260260Pseudo-rapidity coverage ^a ± 2.5 ± 2.3 Active area (cm ²)305407Pixel sensors dimensions (mm ²)266 × 58.7266 × 78.326Number of pixel sensors / layer22Material budget (% X_0 / layer)0.07 ≤ 50 Silicon thickness (µm / layer) ≤ 50 $O(20 \times 22.5)$ Power density (mW/cm ²)40	Layer 2 31.5 260 ± 2.0 507 266 \times 97.8	Pb-Pb Interaction Rate (average) $ayer 2$ 31.5 260 ± 2.0 507 507 6×97.8 6×97.8 6×97.8 7	50 kHz 164 kHz 5.75 MHz cm ⁻² 2.55 MHz cm ⁻² 3.20 MHz cm ⁻² $\lesssim 5 \mu m$ $< 25 \mu m$ > 92% > 99% $< 0.1 pixel^{-1} s^{-1}$ $< 10^{-6} pixel^{-1} frame^{-1}$ $2 -10 \mu s$	
ITS3 TDR: CERN-LHCC-2024-003 Power Dissipation Density, Active Region < 40 mW cm ⁻² Power Dissipation Density, Peripheral Region < 1000 mW cm ⁻² Radiation Load 10 ¹³ 1 MeV n _{eq} cm ⁻² NIEL 10 kGy TID 10 kGy Environmental Conditions 15 °C to 30 °C	NIEL (1 MeV $n_{eq} \text{ cm}^{-2}$) 10^{13} TID (kGray)10a The pseudorapidity coverage of the detector layers refers to tracks originating from a collision at the nominal interaction point ($z = 0$).		ating from a	Readout Efficiency Fraction of Pb-Pb interactions fully recorded, Layer 0 Fraction of incomplete Pb-Pb interactions, Layer 0 Power Budget Descent Dissinguitien Description Actions Description	> 99.9% < 1 × 10 ⁻³
TID 10 kGy Environmental Conditions 15 °C to 30 °C Target Operating Temperature 15 °C to 30 °C	ITS3 TDR: CERN-LHCC-2024-003		Power Dissipation Density, Active Region Power Dissipation Density, Peripheral Region Radiation Load NIEL	< 40 m w cm ⁻² < $1000 \mathrm{mW cm^{-2}}$ $10^{13} \mathrm{1 MeV n_{eq} cm^{-2}}$	
				TID Environmental Conditions Target Operating Temperature	10 kGy 15 °C to 30 °C

MLR1 chips

After an incredible work and effort from all the institutes involved, the 65 nm technology is validated for ITS3

- APTS-SF allowed us to establish the most suited chip variant in terms of performance: modified with gap, split 4, reference collection diode geometry
- APTS-OA enabled all the time response studies, useful beyond ITS3
- CE65 explored different processes and pitches, confirming what observed also in other test structures
- DPTS was crucial for detection efficiency, spatial resolution, cluster size and radiation hardness evaluation, satisfying all the ITS3 requirements

Felix Schlepper

ER1 MOSS details

MOSS is segmented into 10 RSUs and left / right end-10 X RSU MOSS, 14 x 259 mm, 6.72 MILLION PIXELS caps Each RSU is split into top and bottom half units with Repeated Sensor Unit Endcap L different pitches Pads Pads 10 Each half unit contains 4 matrices with different E HA<mark>LF UNIT T</mark>OP distinct analog components and a top level 4 HALF UNIT BOTTOM peripheral control and readout 2.39 mm Each half unit can be controlled, read out and powered ·25.5*/*m – Peripheral circuits Pads By left end-cap via stitched communication backbone LEFT ENDCAP MOSS HALF UNIT SUPPLY Independently, enabling separate testing to identify STEERING yield discrepancies and potential defects MATRIX 0 MATRIX 2 MATRIX 3 MATRIX 1 ROW BIASING COLUMN STEERING DAC || PIXEL || REGION CNTRL CNFG READOU TOP LEVEL TOP LEVEL READOUT SLOW CONTROL READOUT STITCHED COMMUNICATION BACKBONE [control READOUT SUPPLY SUPPLY

Matrices	Pixel matrix	Pitch size
Тор	256×256	22.5 µm
Bottom	320×320	18 µm

Felix Schlepper

ITS3 — Detector services

ITS3 TDR: CERN-LHCC-2024-003

ITS3 — Air cooling

Test set-up

(Flow meter)

Temperature uniformity along the sensor within $5^{\circ}C$ **Integrated displacement RMS** $\leq 0.4 \, \mu m$

Felix Schlepper

ITS3 — Radiation load simulation

ITS3 TDR: CERN-LHCC-2024-003

Physics reach — Heavy flavour collectivity

Recombination of c-quarks with the medium light quarks could cause charm hadrons to partly inherit the flow of light quarks

 Λ_c^+ (udc) has one more light quark than D^0 , may inherit more "collective" characteristics of light quarks

Felix Schlepper

Heavy flavour hadronization from the medium Fragmentation

- A fraction of the Parton momentum is taken from the hadron
- **Recombination/coalescence**
- Partons close in phase-space can recombine

d

Physics reach — Heavy flavour collectivity

12

 \sqrt{C}

- Expected to get a difference $\Delta v_2 \approx 0.03$ between D^0 and Λ_c^+ by TAMU Model*
 - Up to a factor of 4 reduction of the statistical uncertainty Impact of deadzones in ITS3 is negligible
- Able to constrain the modeling of charm diffusion and hadronization in the QGP

* M. HE AND R. RAPP, PRL 124, 042301 (2020)

Physics reach — Thermal dielectrons

Felix Schlepper

Complex invariant mass spectrum of e+e- pairs

- Light flavour hadron decays
- Heavy flavour hadron decays
 - Suppressed by using DCA to primary vertex
- ➡ Thermal radiation
 - From hadron gas
 - From quark gluon plasma (QGP)

In the region $M_{ee} \ge 1.1 \, \text{GeV/c}^2$

ightarrow Dominated by $c\bar{c} \rightarrow e^+e^-$ process and thermal radiation from the QGP

Perfect for extracting the QGP temperature

Physics reach — Thermal dielectrons

Felix Schlepper

Less material

- Less electrons from photon conversions
- Enhanced low- p_T electron tracking
- Improved photon conversion reconstruction, reducing combinatorial background
- Improved impact parameter resolution
- Suppress contributions from heavy-flavour hadron decays

Systematic uncertainty with ITS3 reduces by a factor of two compared to ITS2

