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Inner Tracking 
System 2 (ITS2)
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ALPIDE

7 Layers 
➡ 3 inner barrel (IB) and 4 outer barrel (OB) 

Large active area and granularity 
➡ 10 m  active silicon area, 12.5 x 10  pixels 
➡ 180 nm CMOS MAPS (Monolithic Active Pixel Sensors)    

15 x 30 mm , 512 x 1024 pixels
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Looking at ITS2
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ITS2 IB

SPACEFRAME & 
COLD PLATE

PIXEL CHIPS

FPC

STAVE

Non-sensitive material  
➡ Silicon has 1/7 of total material budget 

Non-uniformly distributed material 
➡ Staves overlapping, support and water    

cooling structure 
Unable to be closer to the interaction point 
➡ Mechanical constraints

Remove circuit board 
➡ New technology integrating 

data, control and power 
distribution on a single chip

Remove mechanical support 
➡ New mechanical design

Remove water cooling 
➡ New processing chip (with 

lower power consumption) 
requiring air cooling
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ITS3 replacement for ITS2 IB
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Lower material budget 
➡ 0.35% X0 → 0.07% X0 per layer for 

most of the area 
Uniformly distributed material 
Closer to interaction point 
➡ Beampipe: 18.2 mm → 16.0 mm 
➡ Layer 0 position: ~24 mm → 19 mm

Key benefits

ITS3 TDR: CERN-LHCC-2024-003

LongeronHalf-ring

Half-layer
sensor

Beampipe

Cylindrical support structure

266 mm
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Bent wafer-scale sensor ASIC 
➡ 65 nm CMOS MAPS 
➡ Fabricated with stitching 
➡ Power density < 40 mW/cm2 

3 layers with 6 sensors 
Air cooling between layers

New Sensor

HALF-LAYER 
SENSOR

CYLINDRICAL SUPPORT STRUCTURE

LONGERON
HALF-RING

BEAMPIPE

266 mm

https://cds.cern.ch/record/2890181?ln=en
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ITS3 material budget
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Non-sensitive materials 
➡ Sillicon dominates 

Uniformly distributed material 
➡ Only lightweight carbon foam and glue 

distributed on the edge of the sensitive area

ITS3 TDR: CERN-LHCC-2024-003

ITS3
Non-sensitive materials 
➡ Silicon has 1/7 of total material budget 

Non-uniformly distributed material 
➡ Staves overlapping, support, water cooling

ITS2 IB

INNER MOST LAYER

INNER MOST LAYER

https://cds.cern.ch/record/2890181?ln=en


Felix Schlepper

ITS3 bending/interconnection procedure
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WIRE BONDING

BENDING
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CARBON FORM
BENT WAFER-SCALE 

SENSOR
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X-ray

ENGINEERING MODEL WITH SILICON DUMMYFelix Schlepper
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Chip development roadmap
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APTS DPTS CE65

MLR1 (Multi-reticle Layer Run 1) 
➡ First 65 nm process MAPS 
➡ APTS, DPTS, CE65 
➡ Successfully qualified the 65 nm process 

for ITS3 
ER1 (Engineering Run 1)  
➡ First stitched MAPS 
➡ MOSS, MOST 
➡ Successfully qualified the large scale 

sensor design  
ER2 (Engineering Run 2) 
➡ ITS3 sensor prototype 
➡ Design ongoing 

ER3 ITS3 sensor production

APTS 
➡ Analogue Pixel Test Structure 

DPTS 
➡ Digital Pixel Test Structure 

CE65 
➡ Circuit Exploratoire 65 nm 

MOSS 
➡ Monolithic Stitched Sensor 

MOST 
➡ Monolithic Stitched Sensor 

Timing

MOSS

MOST

300 mm
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Radiation hardness assessed 
➡ Under the irradiation requirements of ITS3, and even under higher levels, the chip operates normally

MLR1 selected testing results
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ITS3 REQUIREMENT

G. A. Rinella et al., arXiv:2403.08952 
G. A. Rinella et al., NIM-A 1056, 168589 (2023)

https://doi.org/10.48550/arXiv.2403.08952
https://doi.org/10.1016/j.nima.2023.168589
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Radiation hardness assessed 
➡ Under the irradiation requirements of ITS3, and even under higher levels, the chip operates normally 

Spatial resolution and cluster size 
➡ Evaluated for different levels of irradiation: spatial resolution not affected by irradiation, average 

cluster size slightly increases with irradiation

MLR1 selected testing results
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ITS3 REQUIREMENT

G. A. Rinella et al., arXiv:2403.08952 
G. A. Rinella et al., NIM-A 1056, 168589 (2023)

Excellent performances of the 65 nm technology have been established experimentally

https://doi.org/10.48550/arXiv.2403.08952
https://doi.org/10.1016/j.nima.2023.168589
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Bent MAPS characterisation
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BENT MLR1 CHIPS No performance degradation observed when bending 
➡ Spatial resolution of 5 μm consistent with flat ALPIDEs 
➡ Efficiency > 99.99% for nominal operating conditions 
➡ Inefficiency compatible with flat ALPIDEs 

MLR1 chips (65 nm process) were also tested and the results were 
consistent

Bent MAPS work
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ER1 MOSS
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259 mm

MOSS RSU

x10

First stitched chips 
➡ Full module on a single chip 
➡ Wafer-scale (14 x 259 mm ), 6.72 million pixels 

MOSS segmented into 10 repeated sensor 
units (RSU) 
➡ RSUs are divided into top and bottom half 

units with different pitch sizes

2

14 mm

256 × 256 22.5

320 × 320 18

Matrices Pixel matrix Pitch size (μm)

Top

Bottom
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ER1 MOSS selected testing results
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PICKING BONDING

MOSS WIRE-BONDED ON CARRIER CARD

Excellent efficiency and spatial resolution
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ITS3 final wafer-scale sensor design
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ITS3 TDR: CERN-LHCC-2024-003

LAYER 0

LAYER 1

LAYER 2

https://cds.cern.ch/record/2890181?ln=en
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ITS3 final wafer-scale sensor design
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ITS3 TDR: CERN-LHCC-2024-003

Power consumption 
➡ < 40 mW/cm2 

Total fill factor: ~93%  
➡ possibly ~95.5% depending on 

ER2 test results 
➡ i.e., deadzone area: ~4.5-7%442 X 156 PIXELS EACH TILE

https://cds.cern.ch/record/2890181?ln=en
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Physics performance — Pb-Pb collisions
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 = 5.5 TeVNNsPb −| = 0.5, Pbη |±πFAT sim 
ITS2 ITS2 + TPC
ITS3 ITS3 + TPC

Single Track Performance 

Detailed description of 
geometry and material 

Two independent simulation 
methods used 
➡ Full simulation  
➡ Fast simulation (FAT)

ITS Standalone 
➡ Full simulation and FAT results agree for  and  
➡ Differences due to more accurate material description in Full simulation and tracking model 

ITS-TPC matching recovers excellent impact parameter resolution at intermediate 

DCAxy DCAz

pT
Twofold improvement in impact parameter resolution over ITS2
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Physics performance — Heavy flavour
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 reconstruction as an example for possible improvement 
➡ Large three-prong combinatorial background 
➡ Can be better suppressed with improved primary and 

secondary vertex reconstruction

Λ+
C

Public Note on ITS3 Physics Performance ALICE-PUBLIC-2023-002Signal and Background yields estimated in  interval around   mass ±3σ Λ+
C

Factor 10 improvement for S/B 
Factor 4 improvement for the significance 
Impact of deadzones negligible compared 
to the improvement over ITS2

https://cds.cern.ch/record/2868015
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Summary and Outlook
ITS3 project is on track for installation in LS3 
➡ Proved silicon bending 
➡ Technology qualified 
➡ Wafer-scale stitched MAPS 

Technical Design Report approved 
A twofold improvement in spatial resolution wrt. ITS2 
➡ Significant improvement in reconstructing heavy 

flavour hadrons 
Analysis benefiting from ITS3 
➡ Heavy flavour collectivity 
➡ Thermal radiation via dielectron measurements 
➡ And many more analyses…
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ITS3 TDR: CERN-LHCC-2024-003

THANK YOU!

ITS3 — a bent wafer-scale monolithic pixel detector

Curved MAPS

Wire bonding
Stitching

Carbon foam

https://cds.cern.ch/record/2890181?ln=en


BACKUP
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ITS3 — Sensor ASIC design specifications 
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ITS3 TDR: CERN-LHCC-2024-003

https://cds.cern.ch/record/2890181?ln=en
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MLR1 chips
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After an incredible work and effort from all the institutes involved, 
the 65 nm technology is validated for ITS3 
➡ APTS-SF allowed us to establish the most suited chip variant in terms 

of performance: modified with gap, split 4, reference collection diode 
geometry 

➡ APTS-OA enabled all the time response studies, useful beyond ITS3 
➡ CE65 explored different processes and pitches, confirming what 

observed also in other test structures 
➡ DPTS was crucial for detection efficiency, spatial resolution, cluster 

size and radiation hardness evaluation, satisfying all the ITS3 
requirements

APTS DPTS CE65
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ER1 MOSS details
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RSU10 X

MOSS, 14 x 259 mm, 6.72 MILLION PIXELS

256 × 256 22.5 μm

320 × 320 18 μm

Matrices Pixel matrix Pitch size

Top

Bottom

MOSS is segmented into 10 RSUs  and left / right end-
caps 
➡ Each RSU is split into top and bottom half units with 

different pitches 
➡ Each half unit contains 4 matrices with different 

distinct analog components and a top level 
peripheral control and readout 

Each half unit can be controlled, read out and powered 
➡ By left end-cap via stitched communication backbone 
➡ Independently, enabling separate testing to identify 

yield discrepancies and potential defects 
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ITS3 — Detector services
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ITS3 TDR: CERN-LHCC-2024-003

https://cds.cern.ch/record/2890181?ln=en
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ITS3 — Air cooling
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Power densities  
= 25 mW/cm2

Temperature uniformity 
along the sensor within  
Integrated displacement 
RMS 

5∘C

≤ 0.4 μm
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ITS3 — Radiation load simulation
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ITS3 TDR: CERN-LHCC-2024-003

https://cds.cern.ch/record/2890181?ln=en
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Physics reach — Heavy flavour collectivity
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Heavy flavour hadronization from the medium 
Fragmentation 
➡ A fraction of the Parton momentum is taken from the 

hadron 
Recombination/coalescence 
➡ Partons close in phase-space can recombine

q

C C

q

q
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q
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q

q

q

q
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Fragmentation

Recombination

MEDIUM

JET

u

d
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 FRAG + COAL SCHEMATICΛ+
c

u

c
_

Recombination of c-quarks with the medium light 
quarks could cause charm hadrons to partly inherit 
the flow of light quarks 

 (udc) has one more light quark than , may 
inherit more "collective" characteristics of light 
quarks

Λ+
c D0
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Physics reach — Heavy flavour collectivity
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Expected to get a difference  between  and 
 by TAMU Model* 

➡ Up to a factor of 4 reduction of the statistical uncertainty 
➡ Impact of deadzones in ITS3 is negligible 

Able to constrain the modeling of charm diffusion and 
hadronization in the QGP

Δv2 ≈ 0.03 D0
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* M. HE AND R. RAPP, PRL 124, 042301 (2020)

https://doi.org/10.1103/PhysRevLett.124.042301
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Physics reach — Thermal dielectrons
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Complex invariant mass spectrum of  pairs 
➡ Light flavour hadron decays 
➡ Heavy flavour hadron decays 

➡ Suppressed by using DCA to primary vertex 
➡ Thermal radiation 

➡ From hadron gas 
➡ From quark gluon plasma (QGP) 

In the region  
➡ Dominated by  process and thermal radiation 

from the QGP

e+e−

Mee ≥ 1.1 GeV/c2

cc̄ → e+e−

Perfect for extracting the QGP temperature
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Physics reach — Thermal dielectrons
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Less material 
➡ Less electrons from photon conversions 

Enhanced low-  electron tracking 
➡ Improved photon conversion reconstruction, reducing 

combinatorial background 
Improved impact parameter resolution 
➡ Suppress contributions from heavy-flavour hadron decays

pT

Systematic uncertainty 
with ITS3 reduces by a 
factor of two compared 
to ITS2


