

The ALICE 3 Particle IDentification system

Giulia Gioachin On behalf of ALICE Collaboration

18 – 24 July 2024 – Prague

The ALICE 3 Upgrade

ALICE 3 main goal: access the dynamics of the strongly interacting matter produced in heavy-ion collisions

<mark>See I. Altsybeev Talk</mark>

Time-Of-Flight: InnerTOF, OuterTOF, Forward TOF disks

ALICE 3 PID system:

Time-Of-Flight: InnerTOF, OuterTOF, Forward TOF disks **Ring-Imaging Cherenkov**: Barrel RICH, Forward RICH

ALICE 3 PID system:

Time-Of-Flight: InnerTOF, OuterTOF, Forward TOF disks **Ring-Imaging Cherenkov**: Barrel RICH, Forward RICH **EM Calorimeter**: Barrel + Forward ECAL

ALICE 3 PID system:

Time-Of-Flight: InnerTOF, OuterTOF, Forward TOF disks **Ring-Imaging Cherenkov**: Barrel RICH, Forward RICH **EM Calorimeter**: Barrel + Forward ECAL **Muon Identifier Detector**: Barrel Muon Identification Detector

	Component	Observables	η < 4	Detectors		
	Hadron ID	Multi-charm baryons	π/K/p separation up to a few GeV/ <i>c</i>	Time Of Flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$		
	Electron ID	Dielectrons, Quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/ <i>c</i>	Time Of Flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$ Possibily preshower detector		
	Muon ID	Quarkonia, x _{c1} (3872)	reconstruction of J/ Ψ at rest, i.e. muons from 1.5 GeV/ <i>c</i>	steel absorber: L ≈ 70 cm Muon detectors		
	Electromagnetic calorimetry	Photons, jets χ_c	Large acceptance High-resolution segment	Pb-Sci calorimeter PbWO ₄ calorimeter		
	ALICE 3	PID system:	6 5 4 3 2 1 0 -1 Version LOI η=1.0 η=0.5 η=0 MD 3 η=1.5 ABSORBER	-2 -3 -4 -5 -6 n=-1.0 n=-1.5 3		
Tin	ne-Of-Flight: iTO	F, oTOF, fTOF	E magnet	<i>η</i> =−2.0		

G. Gioachin – 42nd International Conference on High Energy Physics

n=3.5

η=4.0

Ring-Imaging Cherenkov: bRICH, fRICH

EM Calorimeter: Barrel + forward ECAL

Muon Identifier Detector: Barrel MID

ECAL

RICH

0

z(m)

2

-2

-3

-1

7=-3.5

η=-4.0

Component	Observables	η < 4	Detectors
Hadron ID	Multi-charm baryons	$\pi/K/p$ separation up to a few GeV/ <i>c</i>	Time Of Flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, Quarkonia, x _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/ <i>c</i>	Time Of Flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: aerogel, $\sigma_{\theta} \approx 1.5 \text{ mrad}$ Possibily preshower detector
Muon ID	Quarkonia, x _{c1} (3872)	reconstruction of J/Ψ at rest, i.e. muons from 1.5 GeV/ <i>c</i>	steel absorber: L ≈ 70 cm Muon detectors
Electromagnetic calorimetry	Photons, jets X _c	Large acceptance High-resolution segment	Pb-Sci calorimeter PbWO ₄ calorimeter

ALICE 3 PID system:

Time-Of-Flight: iTOF, oTOF, fTOF **Ring-Imaging Cherenkov**: bRICH, fRICH **EM Calorimeter**: Barrel + forward **Muon Identifier Detector**: Barrel MID

Exploit **Time-Of-Flight** and **Cherenkov Imaging techniques** → essential for Particle IDentification

2 barrel + 1 forward TOF layers: Two layers → InnerTOF and OuterTOF located at 20 cm and 85 cm from the beam pipe Barrel TOF (|η|<2)

TOF (inner)

• Forward TOF located at 405 cm on either side of the interaction point Forward TOF (2< $|\eta|$ <4 and -4< $|\eta|$ <-2)

The **Time-Of-Flight system** provides particle identification over the full acceptance ($|\eta| < 4$)

p_T (GeV/c)

 10^{-1}

10-

B = 2.0 T

- π/K separation up to $\approx 2 \text{ GeV}/c$
- K/p separation up to $\approx 4 \text{ GeV}/c$
- separation power $\propto L/\sigma_{\text{TOF}}$, $\rightarrow \sigma_{TOF} \approx 20 \text{ ps}$

 π/K 3 σ separation

Total silicon surface ~ 45 m²

Detector Specifications

- **Time resolution** $\sigma_{\text{TOF}} \approx 20$ ps r.m.s.
- **\Box** Low material budget of 1-3% X_0
- □ Power density of 50 mW/cm²

3 candidate sensor technologies for ALICE 3 TOF

- Timing resolution of ~30 ps demonstrated with 50 μm up to (1-2)10¹⁵ 1-MeV-neq/cm²
- Thinner LGADs produced by different manifacturers

- Timing resolution of 40 ps for single photons detection so far
- Very promising results on MIP detection
- Dark count issue → no radation hardness

- Low material budget
- Cheap and easy assembly
- Low power
- Investigation on innovative design to proof timing performance

ALICE

3 candidate sensor technologies for ALICE 3 TOF

- Timing resolution of ~30 ps demonstrated with 50 μm up to (1-2)10¹⁵ 1-MeV-neq/cm²
- Thinner LGADs produced by different manifacturers

- Timing resolution of 40 ps for single photons detection so far
- Very promising results on MIP detection
- Dark count issue → no radation hardness

• Low material budget

R&D for the addition of a gain layer

→ extensive activities of sensor simulation and design

to proof timing performance

ALICE

AR¢A

Monolithic CMOS Sensor

Threshold [mV]

Charge [fC]

Follo U., Gioachin G. et al.

arXiv:2406.19906

Gain ~ 2

Timing 70

250

200

Measured gain lower than expected (10-20) New monolithic devices with higher gain to be tested this year

1x1 mm²

20um

2444

72%

33.0±0.1 V

 $\sim 2 \div 6 \times 10^4$

Hz/mm²

Active area

Pixel pitch

#SPADs

Fill Factor

V breakdown

Rate (before TB)

Dark Count

FBK NUV-HD-RH SiPM prototypes with different protection layers

- Silicone Resin 1 mm (SR1) (n=1.5)
- Silicone Resin 1.5 mm (SR15)
- Epoxy Resin 1 mm (ER1) (n=1.53)
- Without resin (WR) ٠

Time resolution SiPMs with protection resin improves as number of fired SPADs increases

ALICE

SiPM

FBK NUV-HD-RH SiPM prototypes with different protection layers

- Silicone Resin 1 mm (SR1) (n=1.5)
- Silicone Resin 1.5 mm (SR15)
- Epoxy Resin 1 mm (ER1) (n=1.53)
- Without resin (WR)

Time resolution SiPMs with protection resin improves as number of fired SPADs increases

ALICE 3 RICH Detector

 $p_{\rm T}$ (GeV/c) **Requirements:** 10 B = 2.0 T $(\pi 3\sigma \text{ separation})$ TOF (inner) Extend PID reach of outer TOF to higher p_{T} TOF (outer) e/π up to $\approx 2 \text{ GeV}/c$ TOF (forward) RICH (barrel) • π/K up to $\approx 10 \text{ GeV}/c$ 10 RICH (forward) • K/p up to $\approx 16 \text{ GeV}/c$ Aerogel radiator to ensure continuous coverage from TOF \rightarrow refractive index n = 1.03 (barrel) \rightarrow refractive index n = 1.006 (forward) 10⁻¹ + Requiring angular resolution $\sigma_{\theta_{ch}} \approx 1.5$ mrad $\pi/K 3\sigma$ separation 10^{-2} 3

Implementation

- 1(barrel)+1·2(disk) layers
- Barrel RICH at $R \approx 0.30$ m, z < 3.50 m
- Forward RICH at $z \approx 4.10$ m, $R \le 1.00$ m
- Silicon Photomultipliers (SiPMs)

R&D challenge

Merged oTOF+bRICH system using a common SiPM layer coupled to a thin radiator window

G. Gioachin – 42nd International Conference on High Energy Physics

η

ALICE 3 RICH Detector

Cherenkov angle of pions and protons

Test beam in Oct 2023 at CERN PS

- Aerogel radiator by Aerogel Factory LTD (Japan)
- 8x8 SiPM matrices from HPK and FBK, various pixel sizes
- Different radiator windows coupled to SiPM to test TOF+RICH integrated concept

ALICE 3 MID Detector

Requirements

- Muon ID down to $p_{\rm T} \approx 1.5 \; {\rm GeV}/c$
- Pseudorapidity coverage $|\eta| \le 1.3$
 - Hadron absorber outside of the magnet:
 - Standard magnetic steel absorber
 - Thickness of \approx 70 cm at $|\eta| = 0$

└→ Muon chambers

- 160 chambers
- $\Delta \eta \ge \Delta \phi$ granularity $\rightarrow 5 \ge 5 \text{ cm}^2$ cells
- 2 layers of plastic scintillator bars
- Silicon Photomultiplier readout
- Coupling to WLS fibers is under study
- Alternative options:
 - MWPCs: 160 chambers
 - RPCs: 320 chambers

ALICE 3 MID Detector

intillato

Requirements

- Muon ID down to $p_{\rm T} \approx 1.5 \; {\rm GeV}/c$
- Pseudorapidity coverage $|\eta| \le 1.3$

Test beam in July 2023 at CERN PS

G. Gioachin – 42nd International Conference on High Energy Physics

Charge vs the incidence angle and path length ($\langle L \rangle$) in Plastic scintillator bars

Summary

To fulfill the rich physics program, ALICE 3 is being designed with excellent PID capability exploiting several PID techniques

- The PID performance and the several ongoing novel detector R&D have been presented
- They will have a broad impact on the future HEP and nuclear experiments
- ✤ Requiring extensive R&D activities in several strategic areas
 → e.g. Monolithic pixel with additional gain

Outlook

- R&D activities have started
- 2025: selection of technologies, small-scale proof of concept prototypes
- 2026-27: large-scale engineered prototypes \rightarrow Technical Design Reports
- 2033-34: Preparation of cavern and installation of ALICE 3

Thank you for the attention!

Backup slides

H. F.-W. Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

Monolithic CMOS Sensor

And the second second

MADPIX Monolithic CMOS **A**valanche **D**etector **PIX**elated Prototype for ps Timing Application

First prototype with integrated electronics and sensor gain

└→ produced by LFoundry 110 nm

• Active thickness: 48µm

- Backside HV: allow <u>full depletion</u> \rightarrow -25 V to -40 V
- **Topside HV**: manage the <u>gain</u> \rightarrow 30 V to 50 V

≫ 8 matrices of 64 pixels each
≫ 64 x 2 analogue outputs
≫ Pixels of 250µm x 100µm

	Sensor pad Gain layer	
	deep pwell	pwen
	High Resistivity Si p+	
L		Lucio Pancheri
Sym	metrical	

TOF Specifications

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15-1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	1.3×10^{11}	$6.2 imes 10^9$	2.1×10^{11}
TID (rad) / month	$4 imes 10^3$	2×10^2	$6.6 imes 10^3$
Material budget ($\%X_0$)	1–3	1–3	1–3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

Table 11: TOF specifications.

RICH Specifications

Inner Radius (m)	0.9	PD area (m ²)	39		barrel RICH	forward RICH disks
Proximity gap (m) Length (m)	0.2 5.6	PDE in visible range Pixel size (mm ²)	\geq 40% 3x3	Radius (m)	0.9 to 1.2	0.15 to 1.15
Aerogel surface (m ²)	32	Integration fill factor	$\geq 90\%$	z range (m)	-3.50 to 3.50	3.75 < z < 4.15
NIEL (1 MeV n_{eq}/cm^2) / month	4.5×10^9	Time jitter (ps)	≤ 100	Surface (m^2)	28	9
TID (rad) / month	$1.4 imes 10^2$	Occupancy (dark count)	5×10^{-4}	Acceptance	$ \mathbf{n} < 2$	2 < n < 4
Material budget (% X ₀)	3	Occupancy (photons)	5×10^{-3}		$ \eta < 2$	2 < 1 < +
Power density (mW/cm ²)	50	Hit rate (kHz/cm ²)	1.5×10^2	Granularity (mm ²)	2×2	2×2
Cherenkov angle resolution (mrad)	1.5					

Table 13: (Left) RICH and (Right) photon detector specifications

MID Specifications

	Absorber	MID layer 1	MID layer 2
Inner radius (m)	2.20	3.01	3.11
Outer radius (m)	2.90	3.02	3.12
Total length (m)	10	10	10.5
No. of sectors in z	9	10	10
No. of sectors in φ	1	16	16
Scintillator bar length (cm)	-	99.8	123.5
Scintillator bar width (cm)	-	5.0	5.0
Scintillator bar thickness (cm)	-	1.0	1.0

ECAL Specifications

ECal module	Barrel sampling	Endcap sampling	Barrel high-precision
acceptance	$\Delta arphi = 2\pi, \ \eta < 1.5$	$\Delta arphi = 2\pi, \ 1.5 < \eta < 4$	$\Delta \varphi = 2\pi, \\ \eta < 0.33$
geometry	$R_{\rm in} = 1.15 {\rm m},$ $ z < 2.7 {\rm m}$	0.16 < R < 1.8 m, z = 4.35 m	$R_{\rm in} = 1.15 {\rm m},$ $ z < 0.64 {\rm m}$
technology	sampling Pb + scint.	sampling Pb + scint.	PbWO ₄ crystals
cell size	$30 \times 30 \text{ mm}^2$	$40\times 40\ mm^2$	$22\times 22\ mm^2$
no. of channels	30 000	6 000	20 000
energy range	0.1 < E < 100 GeV	0.1 < E < 250 GeV	$0.01 < E < 100 { m ~GeV}$

Table 15: ECAL parameters.

ECal segment	Cal segment η range		Cell size	N_{arphi}	N_η	N _{tot}
Central barrel	$ \eta $ $<$ 0.45	PbWO ₄	$2.2 \times 2.2 \text{ cm}^2$	348	57	19836
Outer barrel	$0.45 < \eta < 1.6$	Pb-Sci sampling	$3 \times 3 \text{ cm}^2$	256	120	30720
End cap	$1.6 < \eta < 4$	Pb-Sci sampling	$4 \times 4 \text{ cm}^2$			6000

ALICE 3 Electromagnetic Calorimeter

Implementation

• 2 (barrel) + 1(disk) layers

Sampling calorimeter: 1mm Pb + 1.5 mm plastic scintillator High energy resolution segment based on PbWO₄ crystals, $\eta \leq 0.22$ Silicon Photomultiplier readout

• High-energy electron and photon ID Up to 100 *GeV* for $\eta < 1.5$ Up to 250 *GeV* for $1.5 < \eta < 4$

Sampling sector