Upgrades and performances of ALICE on muon detection at forward rapidities for LHC Run 3

Guillaume BATIGNE – Subatech, Nantes for the ALICE collaboration

ICHEP 2024 20th July 2024

Outline

- Muon detection at forward rapidities with ALICE:
 - Physics case
 - Limitations of runs 1 and 2 set-up
- Upgrades of muon detection for runs 3 and 4:
 - Upgrade of existing detectors
 - Installation of a new detector (Muon Forward Tracker)
- First performance results:
 - Data taking
 - Performance on charm/beauty separation

Probing QGP at forward rapidities with ALICE

- ALICE (LHC,CERN):
 - Designed to study quark-gluon plasma (QGP)
 - Collisions: Pb-Pb, p-Pb, Xe-Xe, pp
- Forward rapidity:
 - Detector: Muon Spectrometer
 - $2.5 < \eta < 4 / 2^{\circ} < \theta_{\mu} < 9^{\circ}$
 - Different region of the QGP Complementary to central barrel ($|\eta|$ <0.9)
- Heavy flavours:
 - Created early in the collision Production by hard processes
 - Experience the full collision Sensitive to the medium (QGP or not)
- Quarkonia:
 - Historical probe for QGP
 - Matsui & Satz *Phys.Lett.B* 178 (1986) 416-422
 - Suppression/regeneration in QGP
 - Debye screening / kind of QGP thermometer
 - Acceptance down to $p_T = 0$

Selection of results on quarkonia for Runs 1 and 2

J/ψ suppression vs regeneration in Pb-Pb

• J/ ψ thermalisation ($v_2 \neq 0$) in Pb-Pb

Collective effects on J/ ψ production in high multiplicity pp

and many more...

Limitation of the Muon Spectrometer

• Muon filter:

- Frontal absorber: 60 X₀
- Muons: *p_{min}* = 4 GeV/*c* (including the iron wall)

 \Rightarrow limited spatial resolution around the IP region

Limitation of the Muon Spectrometer

 \Rightarrow Need for a high spatial resolution tracker in front of the muon absorber and capabilities of track matching

Upgrades of the muon detectors for Runs 3 and 4

• Targeted Luminosities:

- 13 nb⁻¹ of Pb-Pb data
- about 200 pb⁻¹ pp
- about 0.5 pb⁻¹ p-Pb
- Data taking:
 - From trigger mode to continuous mode \Rightarrow Muon Trigger (MTR) \rightarrow Muon Identifier (MID)
 - From ~5 kHz to 50 kHz in Pb-Pb

 \Rightarrow Upgrade of readout (MCH + MID)

- Muon Forward Tracker (MFT):
 - New detector
 - Measurement of displaced vertices
 - Background (π ,K) discrimination for MCH+MID

MFT in a nutshell

• ALPIDE silicon pixel sensors:

- Monolithic Active Pixel Sensor technology
- Chip size (I x w x h): 30 mm x 15 mm x 50 μm 1024x512 pixel matrix
- Spatial resolution: 5 μm Pixel size: 27 μm x 29 μm
- Integration time: 5 µs
- Same chips as the ALICE ITS

ICHEP 2024 — 20 July 2024

MFT in a nutshell

• ALPIDE silicon pixel sensors:

- Monolithic Active Pixel Sensor technology
- Chip size (I x w x h): 30 mm x 15 mm x 50 μm 1024x512 pixel matrix
- Spatial resolution: 5 µm
- Pixel size: 27 µm x 29 µm
- Integration time: 5 µs
- Same chips as the ALICE ITS

• MFT design:

- 936 ALPIDEs on 280 ladders (between 2 and 5 chips per ladder)
- 10 double-sided half-disks

84% of redundancy between front and back sides

- Position:

First/last planes: 46 cm/76.8 cm from the interaction point (IP)

- Reconstructed tracks:
 - Acceptance:

 $2.4 < \eta < 3.6$ (limitation at high rapidity because of the beam pipe) - Pointing resolution at IP region:

~ 100 μ m (to be compared to $\gamma\beta c\tau_B \approx 5$ mm)

Upgrade of the Muon Tracker

• Detection:

- Same Cathode Pad Chambers (CPC)
 - 1.1 million channels spread over 10 detection planes
- New readout chain:
 - To cope with higher rates and continuous readout
 - New FEE boards: Dual-Sampa Record of the analog signal from pads New amplification, filtering and compression of data Chip developed by Sao Paulo to meet both MCH and TPC requirements
 - New concentrator boards: SOLAR
 - Based on GBT links protocol to communicate with ALICE DAQ through CRU boards (protocol common to many ALICE detectors)

Upgrade from the Muon Trigger to the Muon IDentifier

• Detection:

- Same Resistive Plane Chambers (RPC) 72 detection elements over 4 planes

- Readout boards:
- New Front End Electronics:

 - New FEE boards: Based on FEERIC chip

ICHEP 2024 — 20 July 2024

- Same local and regional boards

Already used as a trigger detector for Runs 1 and 2 (response every 25 ns)

- Higher particle flux because of the increase of collision rate

 \Rightarrow Need to lower gain (lower HV) in order to improve the rate capability of the RPCs and to prevent ageing effects

Higher amplification gain to compensate the decrease of HV

Run 3 data taking with the muon detectors

	Full 2023	Pb-Pb period
MCH	100 %	100 %
MID	99.5%	99 %
MFT	98.1%	99 %
/CH+MID+MFT	97.6%	98.1%

First performance results

- Track matching between MFT and MCH+MID tracks:
 - Based on χ^2 cut in pp (low track multiplicity)
 - Machine learning techniques in Pb-Pb (under development)
- Measurement of J/ψ from matched tracks:
 - Clear signal down to $p_T = 0$

ICHEP 2024 — 20 July 2024

First performance results

- Track matching between MFT and MCH+MID tracks:
 - Based on χ^2 cut in pp (low track multiplicity)
 - Machine learning techniques in Pb-Pb (under development)
- Measurement of J/ψ from matched tracks:
 - Clear signal down to $p_T = 0$
- Separation of J/ψ contributions:
 - From primary vertex (prompt) and B meson decay (non-prompt)
 - Based on the measurement of pseudo-proper decay length (I_z)

Conclusion

- Upgrade of muon detection at forward rapidities in ALICE

 - -New detector MFT
 - Silicon pixel detector used to increase pointing resolution at the interaction point region
- Extension of the physics program at forward rapidities
 - Charm/Beauty separation
 - -Lower background
 - -But also:
 - -Multiplicity/Centrality estimation (complementary to ALICE-ITS)
 - Measurement of the reaction plane for studies of flow
- Outcome of current data taking
 - Stable data taking with MCH, MID and MFT
 - -First results of charm/beauty separation

-New readout for MCH and MID to cope with the collision rate increase in Runs 3 and 4

Thank you

ICHEP 2024 — 20 July 2024

