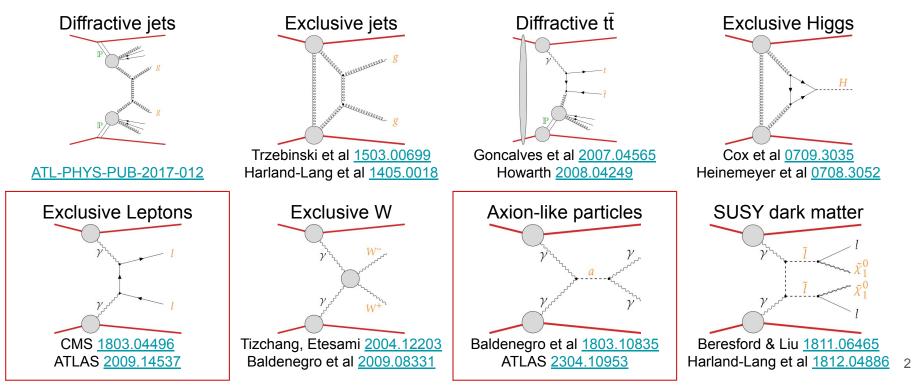
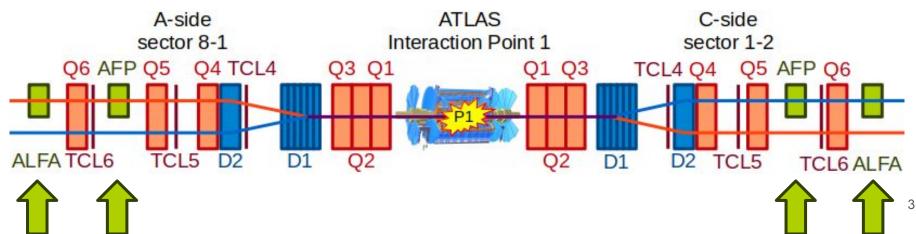
Overview of ATLAS Forward Proton detectors: status and performance

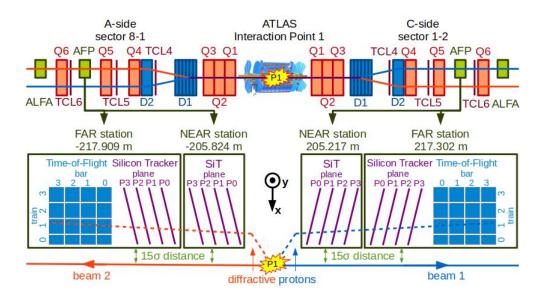
Petr Fiedler Czech Technical University in Prague on behalf of ATLAS Forward Detectors

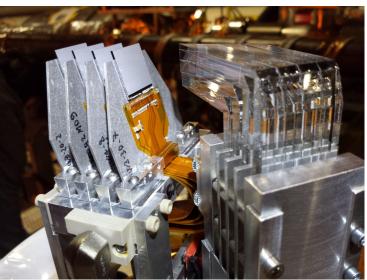

ICHEP 2024

20/07/2024


Physics Motivation

- Detection of events containing scattered intact protons
- Focused on low-cross section processes with high p_{τ} objects in the final state
- Diverse physics program


ATLAS Roman Pots


- Forward detectors located in the LHC tunnel outside the ATLAS cavern
 - \circ $\,$ $\,$ Around 210 meters from the ATLAS interaction point $\,$
- Move close to the beam (1-3 mm) once Stable Beams are declared
- Two detector systems
 - ATLAS Forward Proton (AFP)
 - Absolute Luminosity For ATLAS (ALFA) not discussed in this talk

ATLAS Forward Proton (AFP)

- Two stations on each side of ATLAS
- All stations host Silicon Tracker (SiT)
- Far stations host also Time-of-Flight (ToF) detector

Silicon Tracker (SiT)

- Position measurement of scattered protons
 - Reconstruction of its kinematics
- 4 silicon pixel sensors
 - Spaced 9 mm apart
 - Each sensor 336x80 pixels
 - $\circ \quad \text{Pixel size 50x250} \ \mu\text{m}^2$
 - $\circ \quad \ \ Sensor\ size\ 16.8x20\ mm^2$
- Read out by FE-I4B chips
 - Same as ATLAS Pixel IBL
- 14° angle wrt. beam axis
 - To improve reconstruction resolution
 - ~6 μm in x and ~30 μm in y

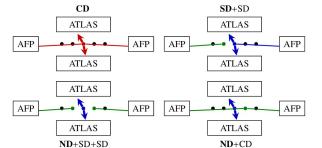
Time-of-Flight (ToF)

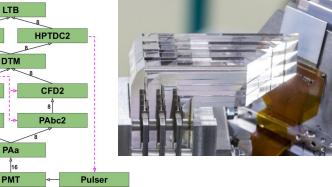
- Suppression of combinatorial background
- 16 quartz bars grouped in 4 trains
- Train/bar widths are 3 mm, 3 mm, 5 mm, 5.5 mm
- Directing light to Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT)

RCE

Data (no configuration or clk path) i2C configuration

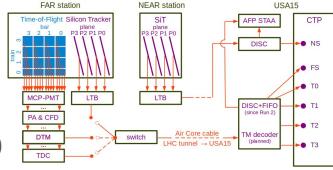
USA15


VLDB


HPTDC1

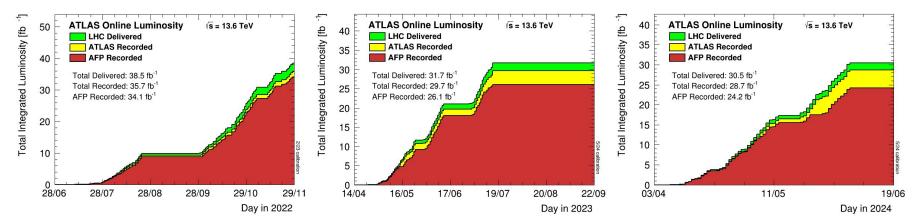
CFD1

PAbc1


- Amplified by 3-stages of Pulse Amplifiers (PAa and PAbc)
- Processed by Constant Fraction Discriminator (CFD)
- Passed through Digital Trigger Module (DTM)
- Processed by High-Performance Time-to-Digital Converter (HPTDC)
- Double PAbc, CFD, and HPTDC; each for 2 trains

Trigger

- SiT trigger signal sent by Local Trigger Board (LTB)
 - Standardly, requires signal from at least 3 planes
 - Can be reprogrammed to different logic
 - 400 ns deadtime
- ToF trigger signal sent by Digital Trigger Module (DTM) and Time-to-Digital Converter (TDC)
 - Requires signal from at least N bars in a train
- Far stations can trigger either on SiT or ToF
- Passed to ATLAS cavern (USA15) by ultra-fast Air Core cables
 - To arrive in time to trigger the "central" detector
- Far station signal connected to 5 Central Trigger Processor (CTP) inputs
 - 1 SiT and 1 for each ToF train
- Different latency for SiT and ToF triggers
 - Dedicated timing-in campaigns



LHC Run-3 data-taking

Total in LHC Run-3 so far: AFP recorded: 84.4 fb⁻¹ 89.7 % wrt. ATLAS recorded 83.8 % wrt. LHC delivered

2022 at \sqrt{s} =13.6 TeV AFP recorded: 34.1 fb⁻¹ 95.5 % wrt. ATLAS recorded 88.6 % wrt. LHC delivered

2023 at \sqrt{s} =13.6 TeV Recorded: 26.1 fb⁻¹ 87.9 % wrt. ATLAS recorded 82.3 % wrt. LHC delivered First half of 2024 at \sqrt{s} =13.6 TeV Recorded: 24.2 fb⁻¹ 84.3 % wrt. ATLAS recorded 79.3 % wrt. LHC delivered

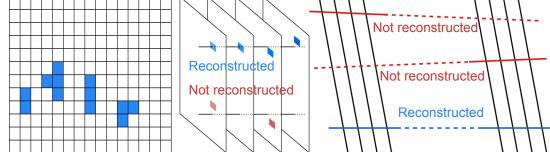
New control systems in LHC Run-3

Data Quality

- Evaluate usability for physics analysis
 - AFP participating in data-taking
 - AFP in physics position
 - Enough SiT planes working
 - All ToF parts working

Improved online monitoring

- Lots of new histograms
- Increased statistics


Automatic Recovery

- Reconfiguration of modules
- Scheduling of next reconfiguration attempts after failed attempt
- Optional power-cycle after several failed attempts

Mattermost Bot

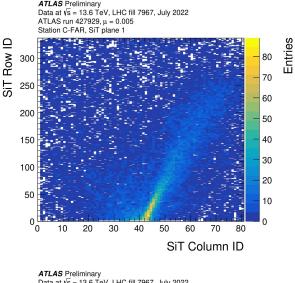
- Sending messages about AFP state
- Sending warnings about issues which need to be acted on

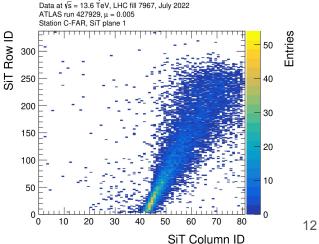
"Proton" Reconstruction

- Starting with SiT and ToF hits
- SiT cluster reconstruction by grouping of adjacent SiT hits
- SiT track reconstruction using Kalman Filter with clusters on the input
- Proton reconstruction by combining SiT tracks from Near and Far stations
 - Knowledge of the LHC magnetic field, the proton position, and the elevation angle allows for reconstruction of the proton kinematics (energy and momentum)
 Not reconstructed Reconstructed
- ToF track reconstruction by grouping ToF hits in a single train
- Vertex reconstruction by combining reconstructed protons and ToF tracks from each side

Data Quality results

Fraction of good luminosity after Data Quality wrt. ATLAS:

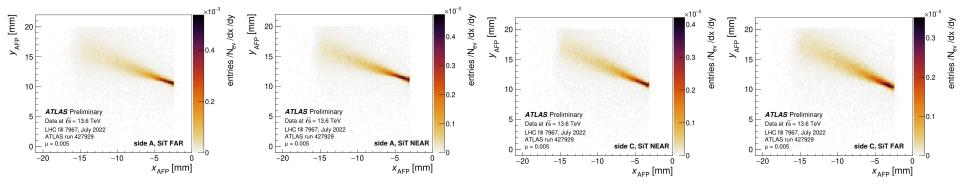

	2022*	2023** preliminary
All of AFP	83.4 %	76.4 %
Silicon Tracker only	92.5 %	81.4 %
A side Silicon Tracker only	96.8 %	84.5 %
C side Silicon Tracker only	93.7 %	82.1 %
Time-of-Flight only	83.6 %	77.7 %


*based on Good Run List for analyses relying on jet, met or b-jet triggers (data22_13p6TeV.periodAllYear_DetStatus-v109-pro28-04_MERGED_PHYS_StandardGRL_All_Good_25ns)

**based on Good Run List for analyses relying on jet triggers at L1 or HLT (data23_13p6TeV.periodAllYear_DetStatus-v110-pro31-06_MERGED_PHYS_StandardGRL_All_Good_25ns)

SiT Hit Map

- First 1.5M events of run 427929 (LBs 200-206)
- Top: Raw distribution of hits in a single SiT plane
- Bottom: Effect of signal cleaning
 - Single track reconstructed per station
 - Single cluster reconstructed per plane
 - Only 1 or 2 hits recorded per plane
- "Diffractive pattern"
 - Caused by settings of LHC magnet between ATLAS interaction point and AFP detectors



SiT Track Map

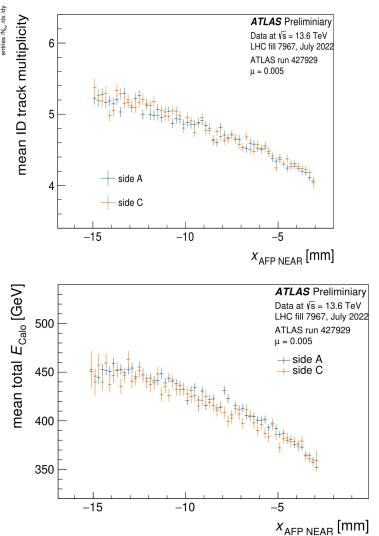
- Distribution of reconstructed tracks
- Center of beam pipe at (0, 10 mm)
- Selection:
 - Events triggered by Minimum-Bias Trigger Scintillators (MBTS)
 - Reconstructed primary vertex
 - Single track in each station on a given side

• Expected relation of scattered proton's x-position in SiT to energy lost in the interaction

Due to LHC magnetic field

Correlation to ATLAS

- Correlation of track x-position to charged track multiplicity of the Inner Detector (ID)
- Selection:
 - Single AFP track in each station on given side


y_{AFP} [mm]

Data at √s = 13.6 TeV LHC fill 7967, July 202 ATLAS run 427929

side A, SIT FAR

- ID track $p_T > 500 \text{ MeV}$
- ID track $|\eta| < 2.5$
- Reconstructed primary vertex

- Correlation of track x-position to total energy measured by ATLAS Calorimeters
- Selection:
 - Only one AFP track in each station on given side
 - Reconstructed primary vertex

14

ToF-SiT alignment

• Correlation of SiT track x-position to ToF train signal

[mm] ^{dy}

ToF LQ-bars

radiators

30

ATLAS Preliminary Data at vs = 13.6 TeV

LHC fill 7967, July 2022

SiT

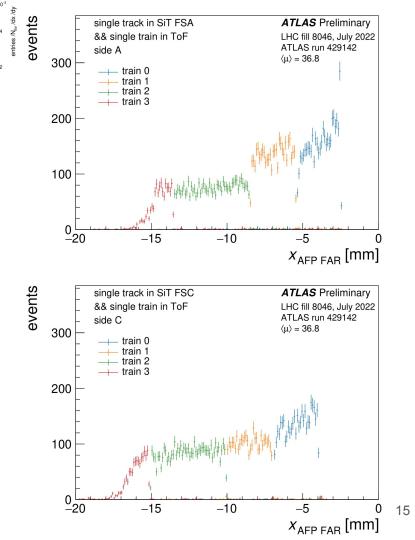
P3 P2 P1 P0

side A, SIT FAR

x_{AFP} [mm

ATLAS run 427929

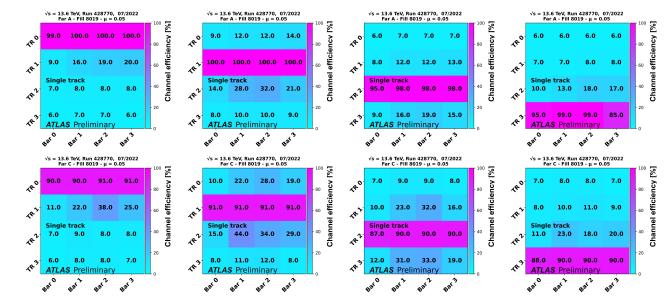
u = 0.004


- Selection:
 - Single SiT track in the station
 - \circ Single ToF train signal in the station

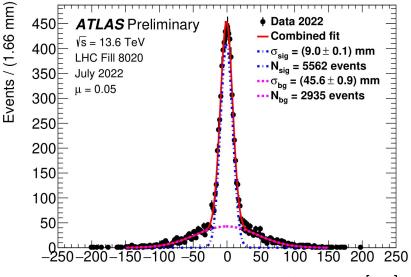
proton

lightguides

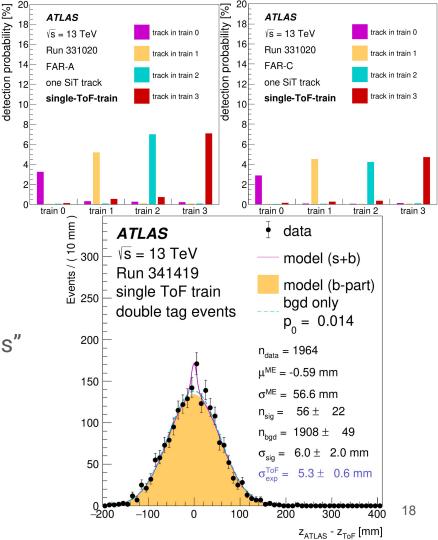
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults


CP-PMT

ToF Efficiency


- Probability of getting hit in the ToF detector during the low-µ run in July 2022
- Tag and Probe method
- Tagged by SiT
- Single track only
- Selection:
 - Single SiT track in the station

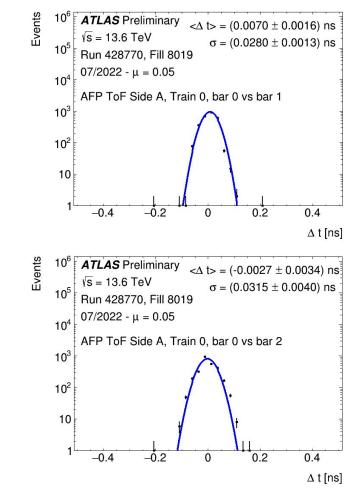
ToF Vertex Matching


- Difference between longitudinal vertex position measured with AFP ToF and ATLAS Inner Detector (ID) measured during μ =0.05 run taken in July 2022
- Resolution 9.0 ± 0.1 mm (30 ps)
- Small initial background contribution wrt. signal
 - Low pile-up data-taking conditions
- Visible advantage of ToF information use
 - Much smaller difference in vertex position in case of signal
- Selection:
 - Primary vertex in ATLAS ID
 - Single AFP ToF train signal in each far station
 - Maximum of one hit in each ToF channel
 - Single track in AFP SiT in each far station
 - SiT track position matching the ToF train position

z_{ATLAS} - z_{ToF} [mm]

ToF Performance in LHC Run-2

- This year's publication
 <u>JINST 19 (2024) P05054</u>
- Full-train efficiency of ~4-6 %
- "While low efficiencies are observed, of the order of a few percent, the resolutions of the two ToF detectors measured individually are 21 ps and 28 ps"
- Resolution of 6.0 ± 2.0 mm


Summary

- Diverse physics programme possible with AFP enhancement of ATLAS measurement capabilities:
 - Measurements of Standard Model processes, like diffractive and exclusive jets or exclusive leptons
 - Searches for a New Physics, like Anomalous Gauge Couplings, axion-like particles or SUSY Dark Matter.
- Promising, high performance of SiT detectors. Good efficiency and timing reconstruction resolution of ToF detectors in the low-µ campaigns.
- Efficient data-taking during the high-µ campaigns as well as during special, low-µ runs:
 - \circ $\hfill \hfill \hf$
 - Continues work to improve data-taking efficiency
 - Data analyses ongoing
- Two analyses published, more is expected in the near future:
 - Diphoton resonance search with AFP tag, <u>JHEP 07 (2023) 234 (2009.14537</u>)
 - Observation of forward proton scattering in association with lepton pairs produced in photon fusion, <u>Phys. Rev. Lett. 125 (2020) 261801 (2304.10953</u>)
- AFP ToF Performance in LHC Run-2, <u>JINST 19 (2024) P05054</u>

ToF Resolution Indication

- Time difference between two channels of the same ToF train
- Selection:
 - Single SiT track in the station
 - SiT track pointing to the given ToF train
 - \circ Single ToF train signal in the station

