

ATLAS New Small Wheel Performance Studies with LHC Run3 data

Patrick Scholer on behalf of the ATLAS Muon Community

Carleton University

20.07.2024 42nd ICHEP, Prague

LHC Upgrades

- LHC undergoes several updates to reach higher luminosity
- Ultimate goal after LS3 (2026-2028): L ~ 5-7.5x10³⁴ cm⁻²s⁻¹ (about 140-200 p+p interactions per bunch crossing)
- Experiments need to be upgraded in order to deal with the increased instantaneous luminosity

Carleton University Motivation for the New Small Wheel

- Goals of the NSW:
 - Reduce muon fake trigger rate in end-cap region
 - Provide precise tracking despite high background particle rate

- Requirements on the NSW:
 - Provide an online segment angle measurement of 1 mrad precision to validate trigger by big wheel
 - Muon <σ_{Pt}/Pt> < 15% @ 1Tev → 150-175 µm single layer resolution

NSW Structure

Micromegas

- Micromegas = Micro Mesh Gaseous Structure
- Two gas gaps: separated by stainless steel mesh
- 120 μ m thin amplification gap \rightarrow high rate capability
- Narrow readout strips \rightarrow excellent position resolution
- Resistive layer \rightarrow spark protection
- Gas mixture: Ar:CO₂:iC₄H₁₀ 93%:5%:2%

small-strip Thin Gap Chambers

- Multiwire proportional chamber with pad/strip segmented cathodes
- Narrow gas gap for excellent time resolution \rightarrow BC identification
- Pads: coarse and fast information for trigger
- Strips: excellent spatial resolution for trigger and offline track reconstruction
- Wires: provide 2nd coordinate in offline reconstruction
- Operating gas: 55%:45% CO₂:n-pentane

NSW Integration into ATLAS

[RUNNING] ATLAS	0.1 (0.00/0.00)
Online Segment	
[RUNNING] TDAQ	
[RUNNING] InnerDetectors	
RUNNING] Calorimeters	
RUNNING] MuonDetectors	
⊕ infrastructure	
[RUNNING] MDT	
P [RUNNING] TGC	
P [RUNNING] NSW	
[RUNNING] NSW-Global-Gnam	
[RUNNING] NSW-RecoveryController	
[RUNNING] NSW-RecoveryService	
[RUNNING] NSWEndcapA	
[RUNNING] NSWEndcapC	
[RUNNING] NSW-A-swRods	
[RUNNING] NSW-C-swRods	

 Both NSWs are fully integrated into the ATLAS TDAQ and Detector Control Systems since the start of run 3 (2022)

Alignment

- Movement/deformations of ATLAS muon spectrometer monitored by optical alignment system
- Absolut alignment determined from mechanical surveys and toroid off runs
- Both NSWs tilt up to 2.7 mm (on average 1mm) when toroid is switched on

$[\mu m]$	$\sigma_{ m ali}(\mu_0)$	$\sigma_{\rm ali}(\mu_{\theta})$	$\sigma_{ m ali}(\mu_\phi)$	$\sigma_{\rm ali}({\rm total})$
BA large	25 ± 2	9 ± 1	10 ± 1	29 ± 2
BA small	25 ± 4	19 ± 3	21 ± 4	38 ± 4
EC large	69 ± 3	20 ± 1	28 ± 2	77 ± 2
EC small	95 ± 4	28 ± 2	26 ± 2	103 ± 3
EE large	106 ± 10	22 ± 3	52 ± 6	121 ± 9
EE small	66 ± 9	36 ± 9	58 ± 8	94 ± 9
BEE	59 ± 8	50 ± 7	33 ± 6	84 ± 7

Endcap aligned with <= 100um precision, further improvements under study

9

Trigger Introduction

sTGC trigger

- Two sTGC trigger levels:
 - Pad trigger: fast coarse information, seeds strip trigger (deployed in 2023 data taking)
 - Strip trigger: Reconstructs strip cluster and uses them for precise measurement of the segment angle (under commissioning, needed for HL-LHC)
- Independent MM trigger (recently deployed)
- Merged MM and sTGC trigger segments forwarded to sector logic

Strip band

~13 strips

Trigger Efficiency

- 2024 data taking started with NSW Pad trigger coincidence → efficiency loss of 8% by invoking the NSW in the coincidence expected due to geometrical reasons and local inefficiencies
- Enabling Micromegas, in the NSW trigger (merging of sTGC Pad and MM segments) improves efficiency

Pad Trigger Results cont.

- Coincidence between TGC Big Wheel, Tile calorimeter and NSW reduced Muon L1 rate by 13 kHz
- Including the MMs (21st of May) increased rate by 1 kHz but also improved efficiency

Muon Reconstruction

• The NSW is fully integrated into the ATLAS simulation and reconstruction software athena

- Resolution extracted with double Gaussian fit to track or layer residual; quoting core Gaussian
- Alternative method: Quote 68% confidence interval
- Cluster position currently reconstructed by charge centroid
- Improved methods under study

Reco Resolution

- Single layer resolution still sub-optimal:
 - Affected by layer-layer misalignment and residual global misalignment
 - Huge improvement expected once those corrections are in place; efforts ongoing
 - Further improvements expected from improved cluster position reconstruction methods (MM: use time information; sTGC: fit charge profile with gaus/parabola)

Efficiency Measurement

Data taken in

April 2024

MM Single Layer Efficiency

Inefficient regions due to LV/HV/readout problems

5 mm

• Efficiency > 90% for regions not affected by above problems

Data taken in

April 2024

sTGC Single Layer Efficiency

Inefficient regions due to LV/HV/readout problems

5 mm

• Efficiency > 90% for regions not affected by above problems

17

NSW for Physics Analysis

- Physics working points require a definition of having a NSW segment contributing to the reconstructed muon; e.g. require 3 stations for highPt muon WP
- Defined the OR of having 4/8 layers with a hit on track in either technology as input for the WP \rightarrow makes use of the high redundancy
- Average 4/8 layers efficiency is > 95%

4/8 Layers Efficiency over Time

• 4/8 efficiency stable over time and > 95% (2023) and >= 99% (2024)

ntract

 \rightarrow The NSW is contributing the ATLAS muon reconstruction with a high efficiency

- The NSW was one of the largest phase 1 upgrades in the LHC experiments
- Despite many problems to overcome both NSWs are installed in ATLAS \rightarrow outstanding achievement
- There are still problems to be solved, but the NSW is already significantly contributing to the ATLAS muon trigger and tracking in the forward region

Backup

odd sectors

even sectors

IP

Background Rates

- MM detectors show higher rate than sTGCs due to higher sensitivity to photons and neutrons
- Strong dependency of the rate to the layer position along the beam line
 - Small sectors are closer to IP \rightarrow show higher rate

