Operational Experience and Performance with the ATLAS Pixel detector at the Large Hadron Collider at CERN

Soshi Tsuno (KEK)

On behalf of the ATLAS Collaboration

The ATLAS Pixel detector

The ATLAS detector is located on the LHC ring. The Pixel detector is the innermost silicon detector.

- 4 layers in the barrel + 3x2 endcap disks
- **NEW** innermost layer (**IBL**) newly used in RUN-2(2015).

The Outer Pixel layer

Three barrel layers, 2x3 endcap disks. (since RUN-1) 1744 modules (1.7m² surface), covering $|\eta| < 2.5$.

Pixel module:

- Planar n⁺-in-n sensor,
- 60.8 x 16.4mm active area,
- $250 \ \mu m$ thickness,
- 16 FEI3 frontend bump-bonded on sensor,
- 50 x 400 μ m² pixel size,
- Total 46080 pixels /module, ~80M channels
- 8-bit Time-over-threshold;
- Radiation hard to $1 \times 10^{15} n_{eq}/cm^2$ (50Mrd)

ICHEP2024

HV guard ring

Type0 connector

barre

NTC

sensor

> FEs

dimensions: ~ 2 × 6.3 cm² weight: ~ 2.2 g

HV hole

decoupling capacitors

MCC pigtail

sensor

The IBL (Insertable B-layer)

New detector is used in RUN-2 (2015).

First time to use 3D sensor technology.

Located at R=33 mm (just outside of beampipe (28 mm)).

Light-flavour jet rejection

5 times better rejection of b-tagging from RUN-1.

IBL module:

- Planar n⁺-in-n / 3D n⁺-in-p sensor,
- 41.3(20.5) x 18.6 mm active area,
- 200(230) μ m thickness (Planar/3D),
- 2(1) FEI4 chip on sensor (Planar/3D),
- 50 x 250 μ m² pixel size,
- Total 26880 pixels / chip, ~12M channels,
- 4-bit Time-over-threshold,
- Radiation hard to <u>5x10¹⁵ n_{eq}/cm²</u> (250Mrd)

July.18.2024

Major changes in RUN3

Optoboard replacement:

- During RUN2, number of disabled modules were increased due to optboard failure.
- ${\sim}50\%$ disabled modules were caused by this.

Suspect humidity.

Most of optoboards were replaced during LS2.

No new failure is seen since then (RUN3).

Major changes in RUN3

Software upgrade:

evolution

Employ radiation damage simulation.

RUN1 (2010-2012) : Default G4 (conventional energy loss)

RUN2 (2015-2018) : Introduction of Nuclei interaction in sensor (Bichsel model Nucl.Instrum.Meth. A899 (2018) 1)

RUN3 (2022 --) : Introduction of Ramo potential (trapping of electron/hole during drift <u>JINST 14 (2019) P06012</u>)

Radiation damage:

IBL : $\sim 1.2 \times 10^{15} n_{eq}/cm^2$ (current, 2024)

 $2.1 \ x \ 10^{15} \ n_{eq}/cm^2$ (expected in end of RUN3 (2025))

ITk L0 : $18x10^{15} n_{eq}/cm^2@2000 fb^{-1}$ ITk L2-4 : $1\sim 4x10^{15} n_{eq}/cm^2@4000 fb^{-1}$

Same order of

the ITk Outer barrel

HV and threshold tuning

Keep high hit-on-track efficiency:

- HV needs to be increased to operate at full-depletion voltage.
- Threshold could be lowered, but trade-off by the readout error rate.

Operation highlight

Desynchronization error:

Pixel/IBL can **handle up to 16 triggers at a time**. Once a trigger has been missed, the module will be desynchronized until the next ATLAS event counter reset (ECR) every 5 sec.

Solution:

In case >16 triggers, the trigger command is not sent to the module in firmware. In this way, only these triggers are missed, but others are kept without waiting for ECR.

Operation highlight

Average number of pixel hits-on-track

Demonstrates the stability over the run / pileup.

Leakage current and fluence

The leakage current evolution is compared with Hamburg model.

Large z-dependence in leakage current measurement, while not in MC (FLUKA/G4).

The z-dependence is also confirmed by the HV scan data.

Pixel performance

New simulation agrees with data.

expected charge

measured charge

trapped?

depth

silicon

sensor

particle track (pT>3GeV)

Radiation damage effect

In the end of RUN3 (~400fb⁻¹), the charge collection efficiency is kept by ~50%.

3D pixel sensor

The 3D sensor technology is first time used in HEP experiments.

- Located in the outer end in inner-most-layer
- Two fabrications are adopted: FBK and CNM.

Simulation:

- E-field is generated by TCAD for given fluence.
- Profiling the electron-hole drift as look-up-table.

a)

3D pixel performance

3D sensor radiation damage effect

The 3D sensor is more radiation hard than planar sensor.

Submitted to JINST https://arxiv.org/abs/2407.05716

Summary

So far, the pixel operation is very stable in RUN3.

Reported in this presentation:

- Optoboard replacement
- Reduction of synchronization errors in outer pixel layers
- Deployment of the radiation damage simulation
- Leakage current measurements
- First results of 3D sensor performance

Yet important developments (not reported):

- Reduction of the hole by finer masking at FE-level
- Deployment of several firmware reset machinery to avoid SEU
- Handling bytestream errors in the tracking
- Light weight of DB contents
- etc…

The Run-3 experiment will be successful.

Backup

