ATLAS jet trigger system: overview and performance at the beginning of Run 3

Ondřej Theiner on behalf of the ATLAS Collaboration ${
m ICHEP}$ 2024, 19 July

ATLAS trigger system - general overview

- If all events were saved ${\sim}1$ PB of data in 10 seconds of data taking
 - not feasible \rightarrow use trigger system to record only interesting events
- ATLAS has two level trigger system
 - Level-1 (L1) trigger:
 - hardware based
 - reduces 40 MHz to 100 kHz, decision made within $2.5\,\mu \mathrm{s}$
 - high- $p_{\rm T}$ muons, electrons, photons, jets, large E_T^{miss}
 - High Level Trigger (HLT):
 - more sophisticated algorithms (tracking, PFlow, jet reconstruction), higher latency ($\mathcal{O}(100) \text{ ms}$)
 - reduces 100 kHz down to 3 kHz

Jets in ATLAS

- Collimated bursts of hadrons produced by the hadronisation of quarks and gluons
- Reconstructed by using calorimeter clusters and charged particle tracks as inputs
 - jets are formed by clustering inputs together (different strategies)
 - small-R jets R = 0.4, large-R jets R = 1.0
- Associated with many interesting Standard Model (SM) and Beyond Standard Model (BSM) processes
 - the most common signature at the LHC \rightarrow powerful jet triggers essential for all physics purposes

Trigger efficiency

- Way to assess the performance of trigger is to study **trigger efficiency**
- Computed with respect to the reference trigger which is chosen to be fully efficient in the studied region
- The sharper the turn-on (rising slope), the less unused data \rightarrow better performing trigger

Source: [1]

Level-1 Trigger

ATLAS jet trigger in Run 3

L1 calorimeter trigger (L1Calo)

- Jet trigger at Level-1 based on the information from the calorimeter
- Upgrade of the system between Runs 2 and 3
 - Runs 1 and 2 trigger towers 0.1×0.1 in $\eta-\phi$
 - Run 3 finer-granularity input from LAr SuperCells (10 in one trigger tower)
 - trigger towers distributed to Feature Extractor (FEX) processor
- FEX has electromagnetic (eFEX), jet (jFEX) and global (gFEX) feature extractors

- jFEX and gFEX used for jet triggers

Schema of 0.1×0.1 trigger tower formed by ten SuperCells. [7]

ATLAS jet trigger in Run 3

L1 jet trigger

- Jet Feature Extractor (jFEX)
 - reconstructs small-R jets, sliding-window algorithm
 - similar performance to L1Calo from Run 2 in single jets
 - higher efficiency in multi-jet triggers due to better resolution of close-by jets
- Global Feature Extractor (gFEX)
 - coarser granularity compared to jFEX \rightarrow large-R jets
- jJ40 \rightarrow jFEX jet, gLJ80 \rightarrow gFEX ..., number is a jet $p_{\rm T}$

L1Calo single jet trigger efficiencies for the Phase-I system (Run 3). $\left[4\right]$

Efficiency of the legacy L1 single jet triggers. [7]

High-Level Trigger

Jet reconstruction for the HLT

Particle Flow jets

- Tracks are extrapolated to calorimeter and are matched to clusters
- Computing E/p
 - deposited energy $\langle E_{dep} \rangle = p^{trk} \langle E_{ref}^{clus} / p_{ref}^{trk} \rangle$
- Cell energy subtraction
- Positive energy topo-clusters surviving the energy subtraction are used for anti- k_t jet clustering algorithm (R = 0.4)

Source: [6]

ATLAS jet trigger in Run 3

HLT jet trigger

- Triggers based on Particle Flow Objects (PFO) thanks to great tracking capability
 - Run 2 triggers used information only from topo-clusters
- Full scan tracking run after preselection stage to reduce CPU costs
- PFO matching tracks to topo-clusters based on extrapolated track and cluster location
- Calibration \rightarrow directly controls the shape of trigger efficiency turn on curves

Multi-jet trigger efficiency at the HLT. [7]

HLT jet calibrations

- Response of the detector for HLT jets with different p_T is different compared to
 offline jets at EM-scale→ need for the calibration
 - ideally we want to get the same response as for offline jets
 - we want distribution HLT/offline $\mu\approx 1$ with small σ

Steps of the HLT jet energy scale calibration [5]

Performance of the trigger-level jet calibrations

- HLT jets are corrected with an offline jet calibration configured for Run 3 reconstruction
- Good trigger-level calibration crucial for well-performing trigger
- Dijet Monte-Carlo HLT/offline response
 - distribution of HLT/offline response for different $p_{\rm T}$ bins is computed
 - each bin is fitted Gaussian and mean (full points in the graph) is estimated
 - boundaries of 1σ quantile are drawn (dashed lines)

HLT jet calibration performance for 2023 [4]

Comparison of the HLT jet calibrations during 2022 and 2023

- At the beginning of Run 3 HLT used Run 2 and offline used Run 3 calibrations
 - HLT/offline response 5-7% above unity
- **2023** improvement by applying the **same calibration** to the HLT and offline reconstruction
 - narrower 1σ bands and mean response closer to 1
 - this can help achieving sharper trigger efficiency turn on

Comparison between HLT jet calibration using Run 2 (blue) and Run 3 (orange) reconstruction [4]

b-jet triggers

- b-jet triggers crucial for precision measurements and searches
- **b-tagging** requires **precise tracking** and dedicated approach
 - inputs are reconstructed tracks and jets, and primary vertex position
- Identification done in two steps
 - fast b-tagging is run on tracks inside super-Regions of Interest
 - final *b*-tagging algorithm
 - low level presel.: fast
DIPS \rightarrow fastGN2; higher level: DL1
d \rightarrow GN1 \rightarrow GN2

Light jets rejection by different *b*-tagging algorithms $[7]^{14}$

Comparison of *b*-jet taggers used in Run 3

• Continuous improvement of *b*-tagging algorithms used in ATLAS

The c-jet and light-jet rejection of different ATLAS flavour tagging algorithms in $t\bar{t}$ Monte-Carlo samples. [2]

The c-jet and light-jet rejections as a function of the b-jet tagging efficiency for jets in a $t\bar{t}$ sample. [2]

- Efficient jet trigger system helps targeting many interesting SM and BSM processes
- Several improvements to the jet trigger system with respect to Run 2
 - L1: gFEX and jFEX
 - HLT: PFlow jets
- Improvements to the trigger-level jet calibration
- Better b-tagging capability thanks to the graph neural networks GN1, and currently GN2
- $b\mbox{-tagging preselections}$ (fast DIPS, fastGN2) introduced in Run 3 allowed for better $b\mbox{-tagging triggering}$

References

- AMERL, Max: The ATLAS Jet Trigger in Run-3, URL https://indico.jlab.org/event/459/contributions/ 11409/attachments/9379/13601/CHEP2023Slides_MAmerl_TheATLASJetTriggerInRun3.pdf (CHEP2023)
- [2] ATLAS COLLABORATION : Jet Flavour Tagging With GN1 and DL1d. Generator dependence, Run 2 and Run 3 data agreement studies. - URL https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
- [3] ATLAS COLLABORATION : Particle-hunting at the energy frontier. URL https://atlas.cern/updates/briefing/particle-hunting-energy-frontier
- [4] ATLAS COLLABORATION : Public Jet Trigger Plots for Collision Data. URL https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetTriggerPublicResults#2022_pp_data
- [5] ATLAS COLLABORATION : Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at \(\sigma\) = 13 TeV with the ATLAS detector. In: Physical Review D 96 (2017), Nr. 7. - URL http://dx.doi.org/10.1103/PhysRevD.96.072002
- [6] ATLAS COLLABORATION: Jet reconstruction and performance using particle flow with the ATLAS Detector. In: The European Physical Journal C 77 (2017), Juli, Nr. 7. – URL http://dx.doi.org/10.1140/epjc/s10052-017-5031-2. – ISSN 1434-6052
- [7] ATLAS COLLABORATION : The ATLAS Trigger System for LHC Run 3 and Trigger performance in 2022.
 2024. URL https://arxiv.org/abs/2401.06630
- [8] BARTOSIK, Nazar: B-tagging. . URL https://en.wikipedia.org/wiki/B-tagging
- [9] SUMMERS, S.: Fast Machine Learning at the Edge for HEP Experiments. URL https://indico.cern.ch/event/1389765/attachments/2815819/4915639/sps_ds_8-3-24.pdf