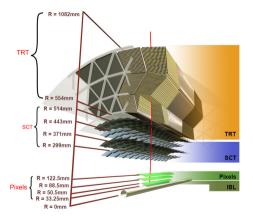

Track and vertex reconstruction performance of the ATLAS detector

G. Gaycken on behalf of the ATLAS collaboration

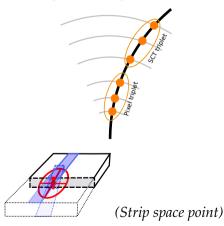
Prague, 2024 July 19



Run 3 interactions per bunch-crossing

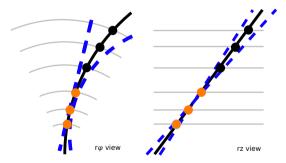
- Average interactions per bunch-crossing increased from run2 to run3 from ~ 30 to ~ 50
- \blacksquare Processing time per event would have tripled from $\langle \mu \rangle \simeq 30$ to 60
- \rightarrow Optimizations were necessary to reduce processing time.

ATLAS Inner detector

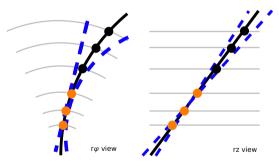

Technologies:

- TRT: stacks of Xe or Ar filled wire tubes
- SCT: 4(2 × 9) barrel(endcap) layers of double sided strip modules with small stereo angle.
- Pixel: 4(2 × 3) barrel(endcap) layers of pixel modules.

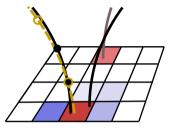
Seed finding (Pixel and SCT)


- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- ambiguity resolution,
- **G**lobal χ^2 fit to improve resolution.
- Extend Si-trajectories into TRT,
- outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.
 Global x² fit to improve resolution.

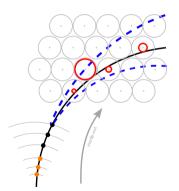
triplets of "space" points constructed from pixel or strip clusters



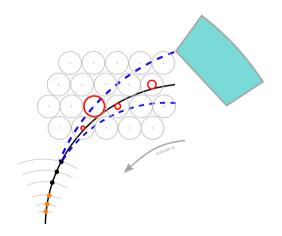
1 Seed finding (Pixel and SCT)


- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- ambiguity resolution,
- **G**lobal χ^2 fit to improve resolution.
- Extend Si-trajectories into TRT,
- Outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.

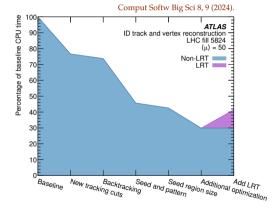
- Seed finding (Pixel and SCT)
- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- ambiguity resolution,
- **G** Global χ^2 fit to improve resolution.
- 6 Extend Si-trajectories into TRT,
- outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.
- **Global** χ^2 fit to improve resolution.



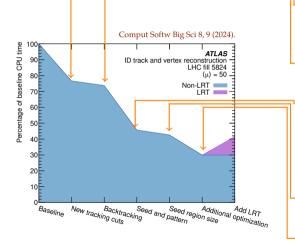
- Seed finding (Pixel and SCT)
- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- 4 ambiguity resolution,
- **5** Global χ^2 fit to improve resolution.
- 6 Extend Si-trajectories into TRT,
- outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.
- **B** Global χ^2 fit to improve resolution.



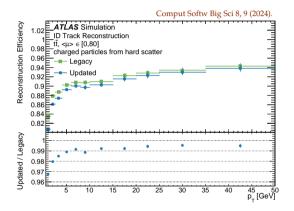
- NN to estimate number of particles traversing shared clusters, position and uncertainty;
- keep unambiguous or tracks with highest score


- Seed finding (Pixel and SCT)
- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- 4 ambiguity resolution,
- **5** Global χ^2 fit to improve resolution.
- 6 Extend Si-trajectories into TRT,
- outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.
- **B** Global χ^2 fit to improve resolution.

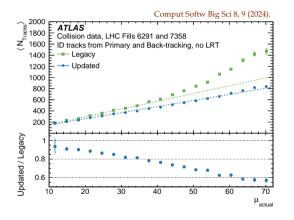
- Seed finding (Pixel and SCT)
- Road building along seed,
- Trajectory construction by means of Kalman filter (Pixel and SCT),
- 4 ambiguity resolution,
- **5** Global χ^2 fit to improve resolution.
- 6 Extend Si-trajectories into TRT,
- outside-in trajectory starting from TRT segments in regions of interest seeded by calorimeter clusters.
- **B** Global χ^2 fit to improve resolution.



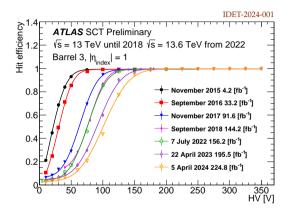
Improvements for Run 3


- require more Si-hits, and tighter impact parameter cuts for Si-seeded tracks
- Improved regions of interest for outside-in track search.
- Tighter cuts on seed impact parameters, cuts widened depending on deviation from straight line in the r-z plane; forth "confirmation" space point,
- Form triplets using smaller angular regions.
- Tighter cuts on TRT precision hits; code optimisations.

Improvements for Run 3

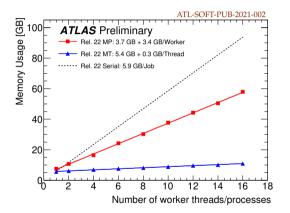

- require more Si-hits, and tighter impact parameter cuts for Si-seeded tracks
- Improved regions of interest for outside-in track search.
 - Tighter cuts on seed impact parameters, cuts widened depending on deviation from straight line in the r-z plane; forth "confirmation" space point,
- Form triplets using smaller angular regions.
- Tighter cuts on TRT precision hits; code optimisations.

Track reconstruction efficiency


- after optimisation / re-tuning: only slightly lower track reconstruction efficiency,
- predominantly at low *p*_T

Track reconstruction fake rate

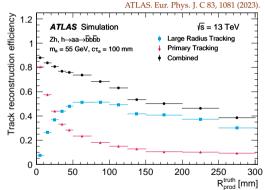
- number of tracks expected to be linear function of average interactions per bunch crossing (μ).
- Deviation from linearity measure of number of "fake" tracks.
- Efficiency loss wrt. Run 2 reconstruction, but
- now very low fake rate, and
- above $\langle \mu \rangle \simeq 50$, Run 2 reconstruction produces for about every extra track also a "fake" track.


Future inefficiencies from aging detectors?

- According to projections SCT can maintain hit efficiency till end of Run 3.
- Same likely true for Pixel.
- Likely radiation damage can be compensated by optimisation of detector operation.

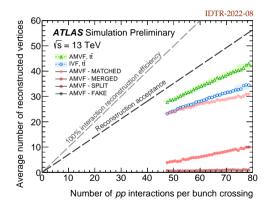
(for Pixel \rightarrow S. Tsuno, Jul 18)

Processing model

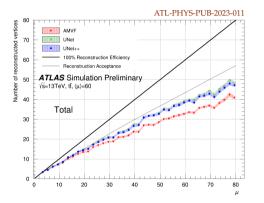


- For Run 3, changed processing model from "multi processing" to "multi threading".
- More memory shared, less memory consumed per core.
- Can do more while staying within the limit of 2 GB/core imposed by grid site configuration.

Extra tracking pass


faster track reconstruction and less memory constraints allowed for an additional tracking pass: Large radius tracking

- algorithms similar to primary track reconstruction pass, but
- limited to unused hits, SCT seeds only,
- tighter cuts on *p*_T, but
- relaxed impact parameter cuts to accommodate signatures of typical long-lived-particle scenarios.

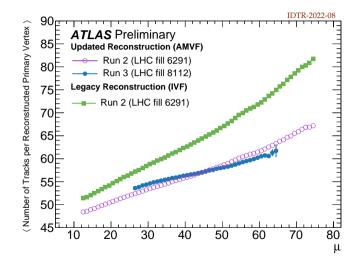


Primary vertex finding

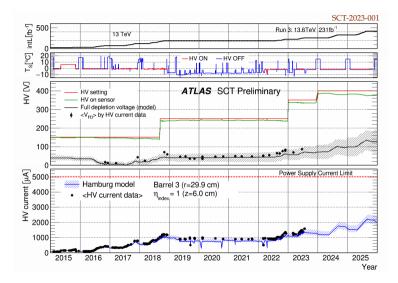
- Original vertex finder (≤ Run 2), was intended for small number of interactions per bunch-crossing.
- For Run 3 changed to "adaptive multi vertex finder" (Acts):
 - Gaussian Track Density seed finder,
 - weighted adaptive Kalman fitter with deterministic annealing, beam spot (transverse plane), and seed based (beam-line) constraints.

Improve vertex finding with ML?

- ATLAS adaptation of pv_finder (LHCb) based on UNet NN.
- Deep convolutional NN with input features (histograms in z-direction, with $\sim 40\mu m$ resolution):
 - sum and sum of squares of track probability distribution in impact parameter space
 - position of maximum of summed probability distribution in x and y.
- output primary vertex probability distribution as a function of z.
- \rightarrow Seems promising, but has not been tested on data.

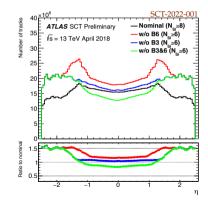


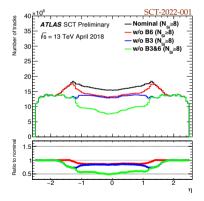
- Track&vertex reconstruction re-optimised for higher pileup conditions of Run 3, significantly reduced processing time at high μ (more than factor 2 at $\mu \simeq 60$), efficiency within 1% of Run 2 reconstruction in most of the phase space.
- Added extra tracking pass to find "large radius tracks", possible because of reduced processing time, and memory consumption.
- Likely can maintain stable tracking performance till the end of Run 3.


(Strategies for Run 4 have been discussed by H. Hayward, Jul 18)

Appendix

Primary vertices in data




SCT projections

Impact of hypothetical inefficiency

Relaxed Si-hit requirement

