New techniques for reconstructing and calibrating hadronic objects with ATLAS

ICHEP 2024

Sven Menke, MPP München

Hadronic objects in ATLAS

- Importance of Pile-Up
- Topological clustering
- Time as a new discriminant
- Calibration methods
 - ML for cluster calibration
 - ML for jet energy calibration
 - ML for energy and mass for large ΔR -jets
- Performance of missing transverse momentum
- Conclusions

19 Jul 2024, Prague

Hadronic objects in ATLAS

- jets in ATLAS are made out of topological clusters (calorimeter) and charged particle tracks (inner) detector)
- clusters and tracks are combined to form higher level objects (with 4-vectors) as input to jet-clustering
 - Particle Flow Objects (PFO) for small ΔR jets (see sketch)

 \blacktriangleright Track-CaloClusters (TCC) for large ΔR jets (splitting the cluster energy to all matching tracks with track's p_{\perp} -fraction in matched tracks as weight, ATL-PHYS-PUB-2017-015) Unified Flow Objects (UFO) combine PFO and TCC depending on environment to make best of both Eur.Phys.J.C81(2020)334)

- jet clustering is performed with FastJet anti- k_t with $\Delta R = 0.4$ (small) or $\Delta R = 1.0$ (large)
- jets are then calibrated in several steps for energy (p_{\perp}) , momentum direction and mass (for large ΔR)

Eur.Phys.J.C77(2017)466

Track

Modified Clusters

Unchanged Clusters

Di-jet event in Run-3

S. Menke, MPP München

New techniques for reconstructing and calibrating hadronic objects with ATLAS

twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions

2022-07-05 17:02:31 CEST

Pile-Up characteristics

- μ : average number of interactions per crossing \sim 50 in Run-3
- Δt : bunch distance 24.95 ns
- signal integration time for the LAr-calorimeters \sim 500 ns

typical LHC bunch structure in 2022-2024

- 2340 colliding bunch pairs (2835 is theoretical max)
- 23 trains \sim 800 ns apart (LHC injection)
- 2-3 sub-trains with gaps of 200 ns (SPS injection)
- 36 filled bunches per sub-train
 - Pile-Up impact depends on bunch crossing Number (BCID)
 - up to 20 colliding bunch pairs contribute to signal
- SEE arXiv:2407.10819 and Turning noise into data: using pileup for physics POSter by A. Pirttikoski

twiki.cern.ch/twiki/bin/view/AtlasPublic/ LuminosityPublicResultsRun3

interactions per crossing 2022-2024

twiki.cern.ch/twiki/bin/view/AtlasPublic/ LArCaloPublicResults2015

LAr baseline shift

Topological clustering

► jet constituents, τ^{\pm} , e^{\pm} and γ are made out of topological cell clusters (TopoClusters) Eur.Phys.J.C77(2017)490

- 3d energy blobs of neighbouring calorimeter cells around seeds with |E| > 4σ
- direct seed neighbours with $|E| > 2\sigma$ become seeds too
- proto-clusters are re-clustered around local energy maxima
- σ is the expected noise $\equiv \sigma_{\text{elec}} \oplus \sigma_{\text{pile-up}}$

 $|E| > 2 \sigma_{\text{noise}}$

 $|\overline{E}| > \overline{4} \sigma_{\text{noise}}$

twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015

calorimeters have excellent time resolution!

- intrinsic time resolution in LAr samplings is \sim 60 $_{
 m ps}$ at high energies
- time has always been reconstructed alongside energy since the beginning of data taking
- added recently to the topological clustering algorithm as additional discriminator (cut at |t| < 12.5 ns) for any cell that has |E| > 4σ
- but restrict the time cut to those cells with $E < 20\sigma$
 - to keep significant, positive energy deposits that are out-of-time (searches for exotic, long-lived particles)

S. Menke, MPP München

New techniques for reconstructing and calibrating hadronic objects with ATLAS

4 / 2 / 0 TopoClusters

ngs is $\sim\,$ 60 $_{
m PS}$ at high energies alongside energy since the

tering algorithm as additional any cell that has $|E| > 4\sigma$ with $E < 20\sigma$ deposits that are out-of-time es)

Time as a new discriminant

- removes OOT Pile-Up jets (see plot to the right)
 - by $\sim 50\%$ at $p_{\perp} \simeq 20$ GeV; by $\sim 80\%$ at $p_{\perp} \geq 50$ GeV
 - number of in-time jets remains unchanged
 - resolution improves by $\sim 5\%$
- > removes fakes for τ^{\pm} , e^{\pm} / γ

Cut / No-cut

new default in Run-3

Eur.Phys.J.C84(2024)455

OOT Pile-Up jets vs. p ICHEP 2024, 19 Jul 2024, Prague

Local Hadronic Calibration (a.k.a. Local Cell Weighting, LCW, Eur. Phys. J. C77(2017)490)

- 4 step procedure to bring the energy scale of clusters from the raw "EM"-scale to the particle-level "LC"-scale
- Classification: compute EM-probability p^{EM} form shapes
- Cell-Weighting: apply hadronic (HAD) and electromagnetic (EM) weights:
 - $\blacktriangleright W_{cell} = (1 p^{EM})W_{HAD} + p^{EM}W_{EM}$
- for 3 different corrections:
 - corrections for hadronic non-compensation
 - corrections for out-of-cluster deposits
 - corrections for out-of-calorimeter (dead-material) deposits
- **Jets** (Eur.Phys.J.C81(2021)689)
 - can use either EM- or LC-scale objects (clusters or flow objects)
 - are corrected for Pile-Up (jet-area correction and residual Pile-Up correction)
 - get their energy corrected by MC-derived Jet-Energy-Scale correction
 - flavour dependency and resolution gets improved by Global-Calibration (MC-derived, keeping average) energy scale constant)
 - data is corrected *in-situ* from measured p_{\perp} balance of jets in multi-jet and Z⁰ / γ + jet events to match MC

7

Cluster calibration with neural networks

- Idea: Apply machine learning to Local Hadronic Calibration
 - to explore the applicability of neural networks to calorimetric calibration
 - so far done with the first of the three correction steps (non-compensation) and implicit classification
 - biggest difference to legacy LCW: Pile-Up is included
 - out-of-cluster and dead-material corrections still to come
- Input quantities for the NNs:
 - kinematics: $(E_{clus}^{EM}, y_{clus}^{EM}) \bullet$ significance: $(E_{clus} / \sigma_{clus}) \bullet$ time: $(t_{clus}, Var_{clus}(\overline{t_{cell}})) \bullet$ cluster moments: (depth, centroid, EM-fraction, energy density, lateral and longitudinal dispersion, compactness) • environment: (isolation, N_{PV} , μ)

Relative resolution of reconstructed E_{clus}^{dep}

trained NNs:

- DNN with leaky Gaussian kernel
- BNN with regularised negative log-likelihood
- linearity (left) and resolution (right) of NNs clusters from di-jets with Pile-Up
 - NNs outperform legacy LCW (removal of Pile-Up)
 - ▶ but Pile-Up removal is not part of LCW ...
 - DNN slightly better than BNN
 - encouraging result to implement the other steps

Median linearity of reconstructed

compared to EM- and LC-scale on simulated

New techniques for jet calibration - Global calibration

- Global-Calibration is applied to jets after setting the jet energy scale (MCJES) (based on MC simulations and energy E and pseudo-rapidity η of the jet)
- Global Sequential Calibration (GSC) (used for Run-2)
 - uses many kinematic observables in addition to p_{\perp} : charged p_{\perp} fraction $f_{\text{charged}} \bullet$ energy fractions in first Tile & third EM layer $f_{\text{Tile0}} \bullet f_{\text{LAr3}} \bullet$ number of tracks $N_{\text{track}} \bullet p_{\perp}$ -weighted average track distance W_{track} • number of associated muon segments N_{segments}

 since JES is kept unchanged, the six corrections can be applied and checked independently of each other **>** requires uncorrelated observables

Global Neural Network Calibration (GNNC) (new, will be used for Run-3)

- alternative to GSC
- trains a DNN with jet observables for a simultaneous correction to p_{\perp} and leaky Gaussian kernel loss-function
 - allows the use of correlated variables; is allowed to change JES
- in addition to the GSC observables it uses: 12 more (i.e. all 14) layer energy fractions $f_{LAr0-3,Tile0-2,HEC0-3,FCal0-2}$ • number of clusters with 90% energy $N_{90\%}$ • η • Pile-Up variables μ , N_{PV}

Eur.Phys.J.C83(2023)761

p_{\perp} response after MCJES

New techniques for jet calibration - Global calibration

- closure and resolution in p_{\perp} compared after MCJES, MCJES+GSC and MCJES+GNNC (here for $0.2 < |\eta| < 0.7$, similar results in all other η -regions)
- small non-closure for GSC at low p_{\perp} stems from MCJES (GSC keeps JES unchanged)
- GNNC does change JES and hence improves the MCJES closure at low p_{\perp}
- resolution improves by 15 25% for GNNC compared to GSC

S. Menke, MPP München

New techniques for reconstructing and calibrating hadronic objects with ATLAS

 \triangleright Z⁰ + jet and γ + jet data are compared *in-situ* to simulations to bring the final JES in data to simulation level (after MCJES+GNNC and *in-situ* η -intercalibration with multi-jet events) Missing- E_{\perp} Projection Fraction (MPF) is used to calculate p_{\perp} -balance between Z⁰ / γ and the full hadronic recoil **best for Pile-Up and lower** p_{\perp}

O(1%) precision is achieved over a large p_{\perp} -range

JES uncertainty vs. p_{\perp} : MPF method $Z^{0}(\rightarrow \mu^{+}\mu^{-})$ + jet

- *b*-jets
- \triangleright up to O(1%) precision on-top of general JES uncertainty

JES uncertainty vs. p_{\perp} : DB method γ + jet b-jet JES uncertainty vs. p_{\perp} : DB method γ + b-jet

S. Menke, MPP München

New techniques for reconstructing and calibrating hadronic objects with ATLAS

Eur.Phys.J.C83(2023)761

Direct Balance (DB) is used in γ + jet events to measure the balance of γ against one (possibly b-tagged) jet **b** good at $p_{\perp} > 100 \,\text{GeV}$ and for single

Calibration of *E* and *m* of large ΔR -jets

- large ΔR jets: good for boosted topologies of heavy resonances
 - the asymmetric response in energy and mass requires dedicated calibration for both
 - both remain highly correlated though and a combined calibration approach is hence desirable
- complex DNN with η annotation (adding 11 Gaussian η -dependent weights to input)
 - inputs: jet kinematics $E, m, \eta, 8$ jet substructure variables, 7 detector-level energy or p_{\perp} fractions, Pile-Up environment N_{PV} , μ
 - initial training for both E and m
 - loss function is sum of negative log-likelihood predicting μ and σ of Gaussian distributions in *E* and *m*
 - then fork and optimise separately for E and m (can freeze the other)
 - residual connection for *m* improves the focus on most important inputs for *m*
- trained on 270 M jets from fully simulated di-jet events (based on Pythia8 and Geant4; other generators, physics for cross-checks)

S. Menke, MPP München

arXiv:2311.08885

η -annotation functions ICHEP 2024, 19 Jul 2024, Prague

- comparison of the DNN calibration (red) with standard calibration (green) and no calibration (blue)
 - DNN outperforms standard calibration in energy- and mass-scale closure and resolution for both E and m
 - typical resolution improvement of > 30% for p_{\perp} > 500 GeV
 - robust against Pile-Up
 - heavy bosons)

S. Menke, MPP München

New techniques for reconstructing and calibrating hadronic objects with ATLAS

arXiv:2311.08885

2D missing transverse momentum vector **p**^{miss} is derived from $p_{\perp}^{obj} = (p_{x}^{obj}, p_{y}^{obj})$ from all "hard" objects (obj) and a remaining "soft" term from "unused" tracks **p**^{track}:

$$oldsymbol{p}_{\perp}^{ ext{miss}} = -oldsymbol{p}_{\perp}^{ ext{hard}} - oldsymbol{p}_{\perp}^{ ext{soft}}$$
, with $oldsymbol{p}_{\perp}^{ ext{hard}} = \sum oldsymbol{p}_{\perp}^{ ext{miss}}$

$$= \sum_{\text{obj}=e,\gamma,\tau,\mu,\text{jet}} \boldsymbol{p}_{\perp}^{\text{obj}}$$

and

p

$$p_{\perp}^{\text{ft}} = \sum_{\text{upused tracks}} p_{\perp}^{\text{track}}$$

scalar transverse momentum sum to evaluate the scale:

$$\sum p_{\perp} = \sum_{\text{obj}=e,\gamma,\tau,\mu,\text{jet}} p_{\perp}^{\text{obj}} + \sum_{\text{unused tracks}} p_{\perp}^{\text{track}}$$

Run-2 performance updated with full Run-2 dataset for use of PFlow objects for jets

evaluation in $Z^0 \rightarrow \mu\mu$ and $Z^0 \rightarrow ee$ events (no real p_{\perp}^{miss} expected)

- dominant systematic in p_{\perp}^{hard} from JES (bump at $\sim 100 \, \text{GeV}$)
- small excess in p_{\perp}^{soft} tail in data from fake electrons

م 90/10

Events /

10

10

10 10

Data / MC 0.5 0.5

~1 ഗ്

Events/ 10

10

102

Data / MC 1 / MC -5.0

arXiv:2402.05858

Missing transverse momentum

event-based significance $S_{H_{\perp}} = p_{\perp}^{\text{miss}} / \sqrt{H_{\perp}}$ is based on $H_{\perp} = \sum p_{\perp}^{\text{jet}}$, which is approximate only (assumes

missing transverse momentum significance evaluated on object-based uncertainties V:

relative resolutions of the objects entering p_{\perp}^{miss}

S. Menke, MPP München

Object-based significance S in $Z^0 \rightarrow \mu \mu$

Conclusions

reconstruction and calibration of hadronic objects in ATLAS is a very active field

- Pile-Up remains the biggest challenge
- time as a new discriminant in calorimetry helps reducing it
- new ML-based techniques start to replace legacy calibration methods for energy and mass
- Run-2 performance results:
- jet calibration

S. Menke, MPP München

- O(1%) precision reached for jet energy scale, O(15 30%) improvements in resolution for energy and mass
- additional b-jet energy scale uncertainty measured to O(1%)
- missing transverse momentum
 - benefits from reconstruction and calibration advancements especially from jets
 - object-based significance sharpens the MET discrimination power
- Run-3 analyses benefit from these improvements