New techniques for reconstructing and calibrating hadronic objects with ATLAS

ICHEP 2024 [Sven Menke,](https://www.mpp.mpg.de/~menke) MPP München in the state of t

 \blacktriangleright

Hadronic objects in ATLAS

- [•](#page-3-0) Importance of Pile-Up
- [•](#page-4-0) Topological clustering
- Time as a new discriminant
- Calibration methods
	- [•](#page-7-0) ML for cluster calibration
	- [•](#page-8-0) ML for jet energy calibration
	- [•](#page-11-0) ML for energy and mass for large ∆*R*-jets
- Performance of missing transverse momentum
- **Conclusions**

Hadronic objects in ATLAS

- ▶ jets in ATLAS are made out of topological clusters (calorimeter) and charged particle tracks (inner detector)
- clusters and tracks are combined to form higher level objects (with 4-vectors) as input to jet-clustering
	- Particle Flow Objects (PFO) for small ∆*R* jets (see sketch)

[Eur.Phys.J.C77\(2017\)466](https://link.springer.com/article/10.1140/epjc/s10052-017-5031-2)

Track

Modified Clusters

Unchanged Clusters

 Track-CaloClusters (TCC) for large ∆*R* jets (splitting the cluster energy to all matching tracks With track's p_⊥-fraction in matched tracks as weight, [ATL-PHYS-PUB-2017-015](https://cds.cern.ch/record/2275636)) ► Unified Flow Objects (UFO) combine PFO and TCC depending on environment to make best of both [Eur.Phys.J.C81\(2020\)334\)](https://doi.org/10.1140/epjc/s10052-021-09054-3)

- jet clustering is performed with FastJet anti-*k*^t with ∆*R* = 0.4 (small) or ∆*R* = 1.0 (large)
- jets are then calibrated in several steps for energy (*p*⊥), momentum direction and mass (for large ∆*R*)

Di-jet event in Run-3 and the state of the [twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions#13_6_TeV_collisions_2022)

S. Menke, MPP München **· A** [New techniques for reconstructing and calibrating hadronic objects with ATLAS](#page-0-0) **> 19** ICHEP 2024, 19 Jul 2024, Prague 3

2022-07-05 17:02:31 CEST

Pile-Up characteristics

26.7 km \equiv 3564 bunch places each Δt = 24.95 ns

- μ : average number of interactions per crossing \sim 50 in Run-3
- ∆*t*: bunch distance 24.95 ns
- signal integration time for the LAr-calorimeters \sim 500 ns

[twiki.cern.ch/twiki/bin/view/AtlasPublic/](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3) [LuminosityPublicResultsRun3](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3)

interactions per crossing 2022-2024

- typical LHC bunch structure in 2022-2024
	- 2340 colliding bunch pairs (2835 is theoretical max)
	- 23 trains \sim 800 ns apart (LHC injection)
	- 2-3 sub-trains with gaps of 200 ns (SPS injection)
	- 36 filled bunches per sub-train
		- \blacktriangleright Pile-Up impact depends on bunch crossing Number (BCID)
		- \blacktriangleright up to 20 colliding bunch pairs contribute to signal
- see **[arXiv:2407.10819](https://arxiv.org/abs/2407.10819)** and **[Turning noise into data: using](https://indico.cern.ch/event/1291157/sessions/545799/) [pileup for physics](https://indico.cern.ch/event/1291157/sessions/545799/)** poster by A. Pirttikoski

[twiki.cern.ch/twiki/bin/view/AtlasPublic/](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015) [LArCaloPublicResults2015](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015)

LAr baseline shift

Topological clustering

► jet constituents, τ^{\pm} , e^{\pm} and γ are made out of topological cell clusters (TopoClusters) [Eur.Phys.J.C77\(2017\)490](https://link.springer.com/article/10.1140/epjc/s10052-017-5004-5)

- 3d energy blobs of neighbouring calorimeter cells around seeds with $|E| > 4\sigma$
- direct seed neighbours with $|E| > 2\sigma$ become seeds too
- proto-clusters are re-clustered around local energy maxima
- \bullet σ is the expected noise $\equiv \sigma_\mathsf{elec} \oplus \sigma_\mathsf{pile-up}$

 $|E| > 2 \sigma_{\text{noise}}$ $|E| > 4 \sigma_{\text{noise}}$ $4/2/0$ TopoClusters

[twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015#LAr_Time_Resolution_Plots_for_20)

- intrinsic time resolution in LAr samplings is ~ 60 ps at high energies
- time has always been reconstructed alongside energy since the beginning of data taking
- added recently to the topological clustering algorithm as additional discriminator (cut at $|t|$ < 12.5 ns) for any cell that has $|E|$ > 4 σ
- but restrict the time cut to those cells with $E < 20\sigma$
	- \triangleright to keep significant, positive energy deposits that are out-of-time (searches for exotic, long-lived particles)

calorimeters have excellent time resolution!

Time as a new discriminant

new default in Run-3

 new time discriminant further reduces residual out-of-time (OOT) Pile-Up that was not suppressed by default topological clustering

- **EX entire clusters are removed (reduces background)**
- and cells inside clusters are removed (improves signal, see plots above)
- removes OOT Pile-Up jets (see plot to the right)
	- by ∼ 50% at *p*[⊥] ≃ 20 GeV; by ∼ 80% at *p*[⊥] ≥ 50GeV
	- number of in-time jets remains unchanged
	- resolution improves by \sim 5%
- \blacktriangleright removes fakes for τ^{\pm} , e^{\pm} / γ

[Eur.Phys.J.C84\(2024\)455](https://link.springer.com/article/10.1140/epjc/s10052-024-12657-1)

50

60

Jets per event

Cut / No-cut

30

OOT Pile-Up jets vs. *p*⊥

- 4 step procedure to bring the energy scale of clusters from the raw "EM"-scale to the particle-level "LC"-scale
- Classification: compute EM-probability p^{EM} form shapes
- Cell-Weighting: apply hadronic (HAD) and electromagnetic (EM) weights:
	- $W_{cell} = (1 p^{EM})w_{HAD} + p^{EM}w_{EM}$
- for 3 different corrections:
	- ▶ corrections for hadronic non-compensation
	- ▶ corrections for out-of-cluster deposits
	- ▶ corrections for out-of-calorimeter (dead-material) deposits
- Jets ([Eur.Phys.J.C81\(2021\)689](https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3))
	- can use either EM- or LC-scale objects (clusters or flow objects)
	- are corrected for Pile-Up (jet-area correction and residual Pile-Up correction)
	- get their energy corrected by MC-derived Jet-Energy-Scale correction
	- flavour dependency and resolution gets improved by Global-Calibration (MC-derived, keeping average energy scale constant)
	- data is corrected *in-situ* from measured p_\perp balance of jets in multi-jet and Z⁰ / γ + jet events to match MC

Local Hadronic Calibration (a.k.a. Local Cell Weighting, LCW, [Eur.Phys.J.C77\(2017\)490](https://link.springer.com/article/10.1140/epjc/s10052-017-5004-5))

Cluster calibration with neural networks [ATL-PHYS-PUB-2023-019](http://cds.cern.ch/record/2866591) ATL-PHYS-PUB-2023-019

- Idea: Apply machine learning to Local Hadronic Calibration
	- to explore the applicability of neural networks to calorimetric calibration
	- so far done with the first of the three correction steps (non-compensation) and implicit classification
		- **biggest difference to legacy LCW: Pile-Up is included**
	- out-of-cluster and dead-material corrections still to come
- Input quantities for the NNs:
	- kinematics: (EEM, yEM) significance: (E_{clus} / σ _{clus}) time: (t_{clus}, Var_{clus}(t_{cell})) cluster moments: (depth, centroid, EM-fraction, energy density, lateral and longitudinal dispersion, compactness) • environment: (isolation, N_{PV} , μ)

Relative resolution of reconstructed $E_{\text{clus}}^{\text{dep}}$ clus

clus

- trained NNs:
	- DNN with leaky Gaussian kernel
	- BNN with regularised negative log-likelihood
- linearity (left) and resolution (right) of NNs compared to EM- and LC-scale on simulated clusters from di-jets with Pile-Up
	- NNs outperform legacy LCW (removal of Pile-Up)
		- but Pile-Up removal is not part of LCW ...
	- DNN slightly better than BNN
	- encouraging result to implement the other steps

Median linearity of reconstructed

- Global-Calibration is applied to jets after setting the jet energy scale (MCJES) (based on MC simulations and energy *E* and pseudo-rapidity η of the jet)
- Global Sequential Calibration (GSC) (used for Run-2)
	- uses many kinematic observables in addition to *p*⊥: charged *p*⊥ fraction *f*_{charged} \bullet energy fractions in first Tile & third EM layer *f*_{Tile0} • *f*_{LAr3} • number of tracks N_{track} • p_{\perp} -weighted average track distance w_{track} • number of associated muon segments N_{segments}

• since JES is kept unchanged, the six corrections can be applied *p*⊥ response after MCJES and checked independently of each other \blacktriangleright requires uncorrelated observables

Global Neural Network Calibration (GNNC) (new, will be used for Run-3)

- alternative to GSC
- trains a DNN with jet observables for a simultaneous correction to *p*[⊥] and leaky Gaussian kernel loss-function
	- allows the use of correlated variables; is allowed to change JES
- in addition to the GSC observables it uses: 12 more (i.e. all 14) layer energy fractions $f_{\sf LAr0\text{-}3,File0\text{-}2,HECO\text{-}3,FCa10\text{-}2}$ • number of clusters with 90% energy $N_{90\%}$ • η • Pile-Up variables μ , $N_{\sf PV}$

New techniques for jet calibration \triangleright **Global calibration Eur. Phys.J.C83(2023)761**

- closure and resolution in *p*[⊥] compared after MCJES, MCJES+GSC and MCJES+GNNC (here for $0.2 < |\eta| < 0.7$, similar results in all other η -regions)
- small non-closure for GSC at low *p*[⊥] stems from MCJES (GSC keeps JES unchanged)
- GNNC does change JES and hence improves the MCJES closure at low *p*[⊥]
- resolution improves by 15 25% for GNNC compared to GSC

S. Menke, MPP München **· A** [New techniques for reconstructing and calibrating hadronic objects with ATLAS](#page-0-0) **ICHEP 2024, 19 Jul 2024**, Prague 10

 \triangleright Z^0 + jet and γ + jet data are compared *in-situ* to simulations to bring the final JES in data to simulation level (after MCJES+GNNC and *in-situ* η-intercalibration with multi-jet events) Missing-*E*[⊥] Projection Fraction (MPF) is used to calculate \boldsymbol{p}_\perp -balance between Z 0 / γ and the full hadronic recoil best for Pile-Up and lower *p*[⊥]

O(1%) precision is achieved over a large *p*⊥-range

JES uncertainty vs. ρ_\perp : MPF method Z $^0(\rightarrow\mu^+\mu^-)$ + jet

Direct Balance (DB) is used in γ + jet events to measure the balance of γ against one (possibly b-tagged) jet good at *p*[⊥] > 100GeV and for single

- *b*-jets
- ► up to $O(1\%)$ precision on-top of general JES uncertainty

JES uncertainty vs. *p*⊥: DB method γ + jet b-jet JES uncertainty vs. *p*⊥: DB method γ + b-jet

Calibration of *E* **and** *m* **of large** ∆*R***-jets [arXiv:2311.08885](http://arxiv.org/abs/arXiv:2311.08885)**

- large ∆*R* jets: good for boosted topologies of heavy resonances
	- the asymmetric response in energy and mass requires dedicated calibration for both
	- both remain highly correlated though and a combined calibration approach is hence desirable
- complex DNN with η annotation (adding 11 Gaussian η -dependent weights to input)
	- inputs: jet kinematics E , m , η , 8 jet substructure variables, 7 detector-level energy or *p*[⊥] fractions, Pile-Up environment *N*_{PV}, μ
	- initial training for both *E* and *m*
	- loss function is sum of negative log-likelihood predicting μ and σ of Gaussian distributions in *E* and *m*
	- then fork and optimise separately for *E* and *m* (can freeze the other)
	- residual connection for *m* improves the focus on most important inputs for *m*
- trained on 270 M jets from fully simulated di-jet events (based on Pythia8 and Geant4; other generators, physics for cross-checks)

n -annotation functions

- comparison of the DNN calibration (red) with standard calibration (green) and no calibration (blue)
	- closure and resolution for both *E* and *m*
	- typical resolution improvement of > 30% for *p*[⊥] > 500GeV
	-
	- heavy bosons)

S. Menke, MPP München **· A** [New techniques for reconstructing and calibrating hadronic objects with ATLAS](#page-0-0) **ICHEP 2024, 19 Jul 2024**, Prague 13

► 2D missing transverse momentum vector p_{\perp}^{miss} is derived from ${\bm p}_{\perp}^{\rm obj} = (p_{\!\times}^{\rm obj}$ obj "**p**obj $\hat{S}_{\rm y}^{\rm obj})$ from all "hard" objects (obj) and a remaining "soft" term from "unused" tracks *p*'I¤^{ck}:

$$
\boldsymbol{p}_{\perp}^{\text{miss}} = -\boldsymbol{p}_{\perp}^{\text{hard}} - \boldsymbol{p}_{\perp}^{\text{soft}}, \text{ with } \boldsymbol{p}_{\perp}^{\text{hard}} = \sum_{\ell} \boldsymbol{p}_{\ell}^{\ell}
$$

$$
= \sum_{\text{obj}=e,\gamma,\tau,\mu,\text{jet}} \boldsymbol{p}_{\perp}^{\text{obj}}
$$

unused tracks ⊥

scalar transverse momentum sum to evaluate the scale:

$$
\sum p_{\perp} = \sum_{\text{obj}=e,\gamma,\tau,\mu,\text{jet}} p_{\perp}^{\text{obj}} + \sum_{\text{unused tracks}} p_{\perp}^{\text{track}}
$$

 Run-2 performance updated with full Run-2 dataset for use of PFlow objects for jets

► evaluation in $Z^0 \to \mu\mu$ and $Z^0 \to$ ee events (no real p_{\perp}^{miss} expected)

- dominant systematic in p_{\perp}^{hard} from JES (bump at \sim 100 GeV)
- small excess in $p_{\perp}^{\rm soft}$ tail in data from fake electrons

1⊫

[−]² 10 [−]¹ 10

10 10 10^4 10^{5} 10^6 **)**
სარარი
ლაქირო

> 1⊫ $10₂$

0.5

 $\sum_{\substack{1 \text{odd } 1}}^{\text{O}} \frac{1}{1}$
 $\sum_{\substack{1 \text{odd } 1}}^{\text{O}}$

0.5

 $\sum_{\substack{1 \text{odd } 1}}^{\text{O}} 1.5$

 $10 \equiv$

 10^2

 10^3

10

 10^{5}

 10^6

>
ወ¹⁰⁷
Events 10⁶

 10^7

Missing transverse momentum and the set of the set of

 event-based significance $S_{H_{\perp}} = p_{\perp}^{\text{miss}} / \sqrt{H_{\perp}}$ is based on H_{\perp} = $\sum p_{\perp}^\mathrm{jet}$, which is jet approximate only (assumes calorimeter-like resolution)

 missing transverse momentum significance evaluated on object-based uncertainties *V*:

Object-based significance S in $\textsf{Z}^\textsf{0} \to \mu\mu$

relative resolutions of the objects entering *p* miss

Conclusions

reconstruction and calibration of hadronic objects in ATLAS is a very active field

- Pile-Up remains the biggest challenge
- time as a new discriminant in calorimetry helps reducing it
- new ML-based techniques start to replace legacy calibration methods for energy and mass
- Run-2 performance results:
- jet calibration
	- *O*(1%) precision reached for jet energy scale, *O*(15 30%) improvements in resolution for energy and mass
	- additional b-jet energy scale uncertainty measured to *O*(1%)
- missing transverse momentum
	- benefits from reconstruction and calibration advancements especially from jets
	- object-based significance sharpens the MET discrimination power
- Run-3 analyses benefit from these improvements