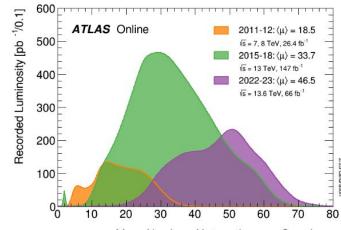
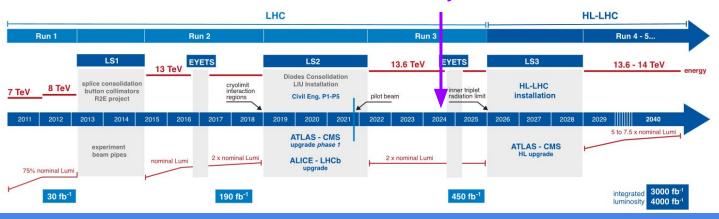


Technical challenges and performance of the new ATLAS LAr Calorimeter Trigger

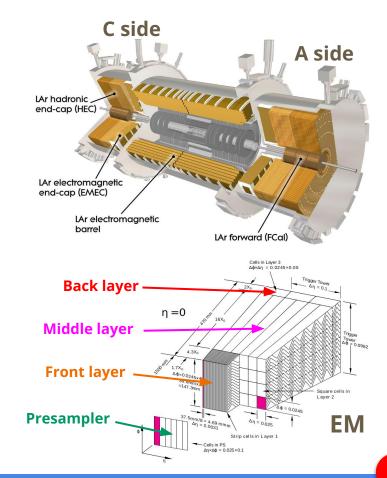

<u>Dominik Babál</u> (Slovak Academy of Sciences) On behalf of the Liquid Argon Calorimeter group


ICHEP 2024 | PRAGUE

Digital trigger for Run3

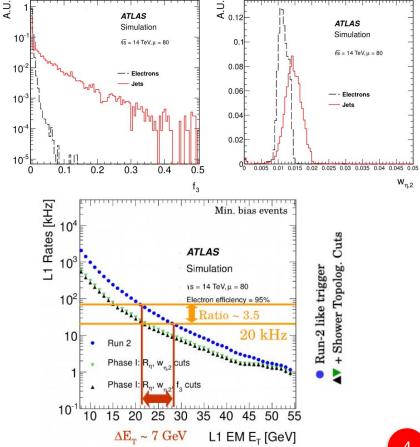
- Higher instantaneous luminosity during Run 3
 - LAr Analog Trigger upgraded to LAr Digital Trigger to cope with higher pile-up (aim for <µ> above 60)
- Analog trigger operational until end of 2023
- **Digital trigger** fully operational from 2024 and expected to be used also during HL-LHC (after electronics upgrade during LS3)
- Maximum ATLAS L1 trigger rate in Run 3 must remain the same as for Run 2

Mean Number of Interactions per Crossing



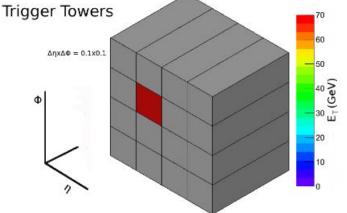
Currently here

ATLAS Liquid Argon Calorimeter


- Sampling calorimeter segmented into four parts (EMB, EMEC, HEC, FCAL)
- Active material: Liquid Argon
- **Passive material:** Lead (EM), Copper (HEC), Copper + Tungsten (FCAL)
- Each partition consists of **3** (FCAL) **or 4 layers**:
 - **Presampler** (EM) measure energy loss before the calorimeter
 - $\circ \quad \textbf{Front} \text{ distinguish } \pi^0 \text{ and } \gamma$
 - Middle deepest, absorbs most of the EM shower
 - **Back** catch the tail of EM shower
- 180k calorimeter cells, coverage |η|<4.9

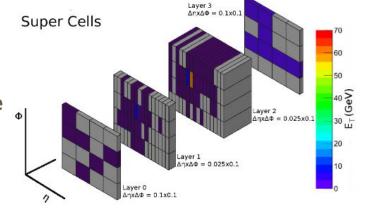
Motivation for a new trigger

- L1 trigger rates same as in Run 2
 - Maximum 100 kHz, 20 kHz allocated for EM trigger
- <u>Inclusive electron trigger</u>:
 - Analog trigger in Run 2 minimum E_T cut for electrons ~28 GeV
 - **Digital trigger** in Run 3 L1 rate can be reduced for the same E_T cut, thanks to:
 - Improved selection with <u>shower</u> <u>shape variables</u> (R_n , $w_{n,2}$, f_3)
 - **10x finer granularity** for triggering (Trigger Towers → Super Cells)
 - Or possible to reduce E_T cut down to
 - \sim 22 GeV while keeping the Run 2 rate

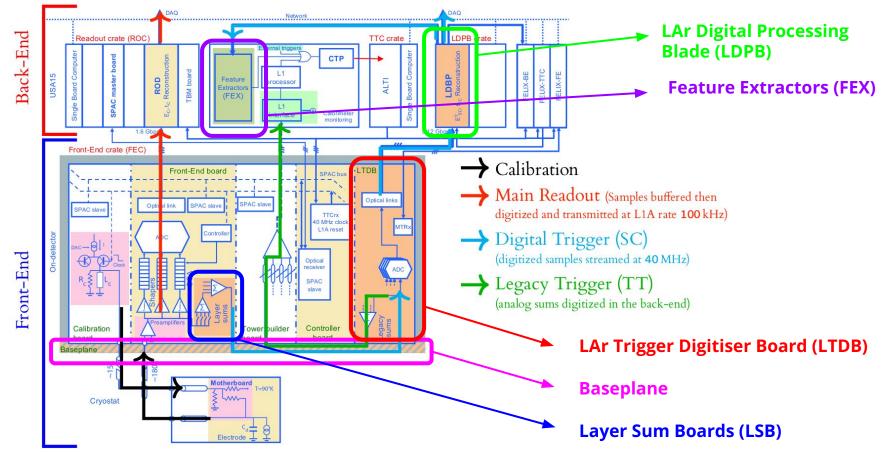


LAr Phase-I Upgrade

• Analog trigger setup:


- 180k cells grouped into **5.4k Trigger Towers (TT)** $(\Delta \eta x \Delta \phi = 0.1 x 0.1)$ - using **analog** signals
- \circ E_T in all 4 layers summed shower shape information lost

ger Towers (TT) signals

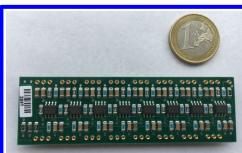


• <u>Digital trigger setup:</u>

- Calorimeter cells grouped into **34k Super Cells (SC)**
- Added segmentation to layers + increased resolution ($\Delta\eta x \Delta \phi = 0.025 x 0.1$) of front and middle layers
 - → Access to the <u>longitudinal and lateral shower</u> <u>shapes</u>
- Signal **digitised** on-detector

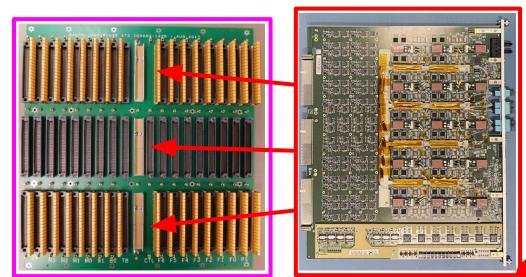
LAr Digital Trigger electronics

ATLAS


Front-end electronics upgrade

• <u>Baseplanes</u>:

- Used to provide connection between various elements in Front End Crate (FEC)
- Allow routing for both analog and digital trigger
- **114 new baseplanes** equipped with LTDB ports


• Layer Sum Boards:

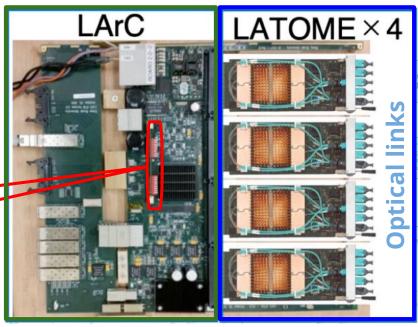
- Plug-in card for Front End Board (FEB) that performs summing of the analog signals
- Provides finer granularity for front and middle layers, while retaining the signals for legacy trigger

• LAr Trigger Digitiser Boards:

- 124 new boards used to shape, sample and digitise SC signals and send them to back-end electronics via optical links
- Custom-designed 12 bit ADCs operable at 40 MHz
- Send legacy layer sums to TT builder board

Back-end electronics upgrade

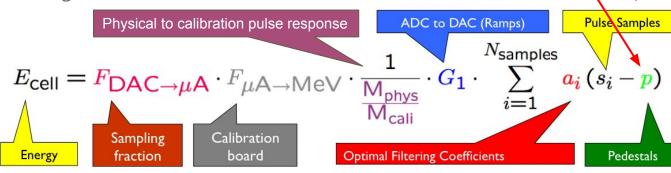
• LAr Digital Processing Blades

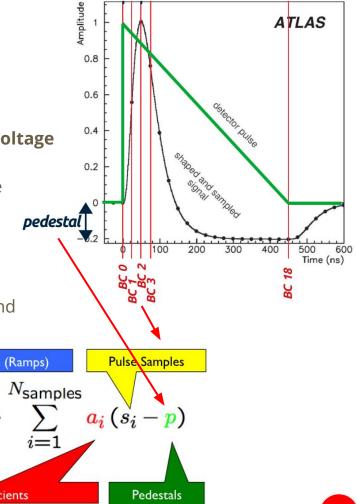

- Each one of **30 new LDPBs** consists of:
 - 1 LAr Carrier (LArC)
 - 4 LAr Trigger PrOcessing MEzzanine (LATOMEs)
 - 1 Intelligent Platform Management Controller (IPMC) for control and monitoring

• LATOMEs

- **Receive signal** from LTDBs at 40MHz (25 Tbps)
- Reconstruct E_T of the SC and identify bunch crossing
- **Transmits energies** to L1Calo FEX via 48 optical links (41 Tbps)
- Use Intel Arria 10 FPGAs to process up to 320 SCs

LDPB


• LArCs


- Responsible for readout + providing trigger, timing and control signals for LATOMEs
- Use Xilinx Virtex 7 FPGAs

LAr Calorimeter Signal

- Signal formation is based on the **ionization of the liquid Argon** triggered by the passing particle
- **Ionization current** is produced in the LAr gap **by applying high voltage** (250 2500 V)
- Initial **triangular signal is amplified, shaped and digitized** in the front-end
- Energy and timing is computed in the back-end:
 - In Main Readout for individual cells
 - In **Trigger**, cells are summed to form TTs or SCs
- Energy is estimated from pulse amplitude, calibration constants and optimal filtering coefficients

Coverage and pulse shape

 Very good overall coverage (> 99.7%) - only few problematic SCs

Vorm. amplitude

0.8

0.6

0.4

0.2

-0.2

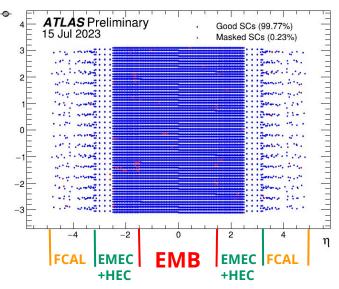
Vorm. amplitude

0.8

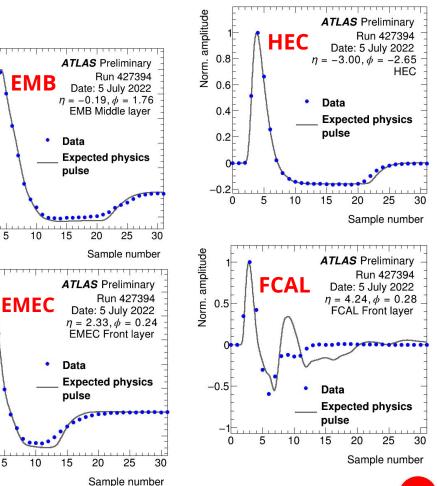
0.6

0.4

0.2

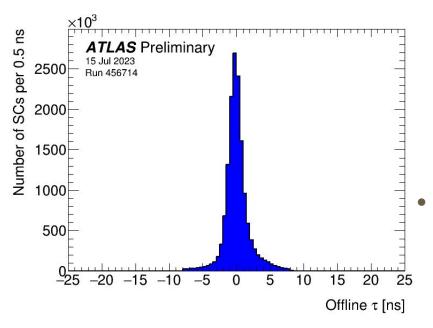

-0.2

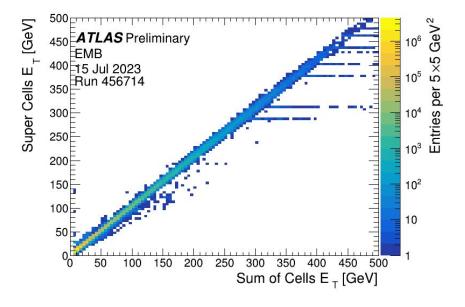
0


0

0--

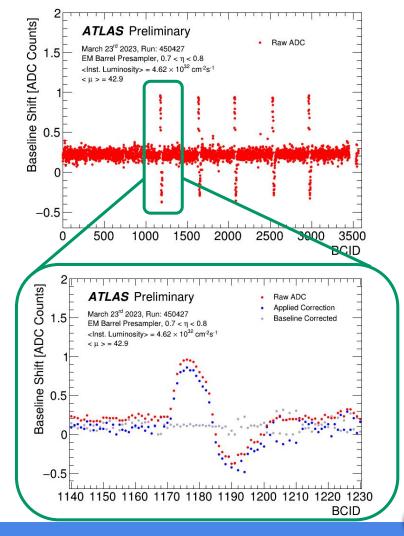
n


- SC pulse shape from data consistent with pulse shape predicted from calibration
- FCAL pulse shape different from the other parts due to different electronics layout
 - Electronics calibration not applicable for FCAL



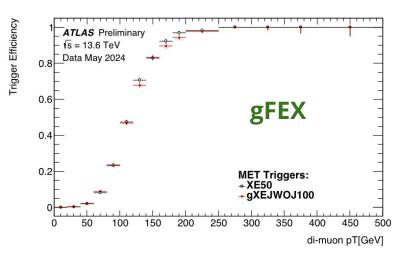
Timing and energy calculation

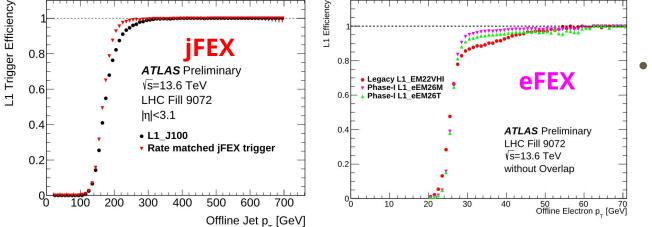
- **Good timing alignment and uniformity** for all LAr layers and partitions
- Offline τ well below 25 ns (time between two bunches) \rightarrow eliminating late and early triggers



- SC E_T calculated on LATOMEs compared to the sums of corresponding cells in the main readout
 - Overall **very good agreement**
 - Dedicated **saturation criteria applied to some** η **regions** \rightarrow visible saturation lines for some high E_{T} SCs

Baseline correction


- Since **LAr pulses are long** (up to 700 ns), **out-of-time pile-up can shift the baseline** (level when zero energy deposited in the calorimeter)
- Shifts most significant at the beginning of the bunch trains - bipolar pulses are averaged to 0 after ~ 500 ns
- Algorithm implemented to <u>correct for the</u> <u>baseline shift</u>
 - Correction calculated **both on LATOMEs** (online) and in the Main readout (offline)
 - Applied **per SC** and bunch crossing identifier (**BCID**)
 - Recalculated and **updated every ~ 11 s**



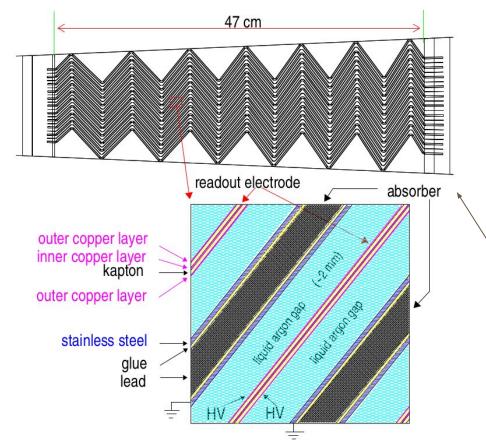
Efficiency of the new trigger

- ATLAS L1Calo trigger system now benefits from the increased resolution of the new digital trigger
- Decisions are made by **Feature EXtractors (FEX)** of <u>3 types</u>:
 - **eFEX (electromagnetic)** \rightarrow *e*, γ and τ
 - **jFEX (jets)** \rightarrow jets, τ and E_{τ}^{miss}
 - **gFEX (global)** → large jets, ΣE_T and E_T^{miss}

- With the new trigger:
 - ~10% decrease in the L1Calo rate for eFEX
 - Comparable rate for jFEX
 - Sharper turn-on curves with new trigger \rightarrow higher efficiency at the threshold

Conclusions

- High pile-up conditions in Run 3 motivated upgrade of the LAr Analog Trigger
- LAr Digital Trigger equipped with <u>new electronics</u> and fully functional:
 - **10 x finer granularity than legacy trigger** (Trigger Towers replaced with Super Cells)
 - **L1 Calo rate decreased** by around 5 kHZ while preserving (or even increasing) the efficiency
- LAr Analog Trigger has been already decommissioned for eFEX and jFEX at the start of 2024
- Overall very good performance of the Digital Trigger
 - Expected to be <u>operational also during HL-LHC</u>



Principle of operation

- Incoming particle interacts with absorber and produces shower
- Shower particles ionize LAr in the gap (~2 mm) - secondary particles drift to the readout electrodes (t_{drift} ~ 450 ns)
- Current is amplified, shaped and digitized

Accordion geometry in EM barrel and endcap, **pad** geometry in HEC and **rod** in FCAL

Shower shape variables for DT

 R_{η} Given a 3×2 group of Super Cells in $\eta \times \phi$ centered on the highest-energy Super Cell in the middle layer (2), R_{η} is defined as the transverse energy measured in the 3×2 group divided by the transverse energy measured in a 7×2 group:

$$R_{\eta} = \frac{E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.075\times0.2}^{(2)}}{E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.175\times0.2}^{(2)}}$$

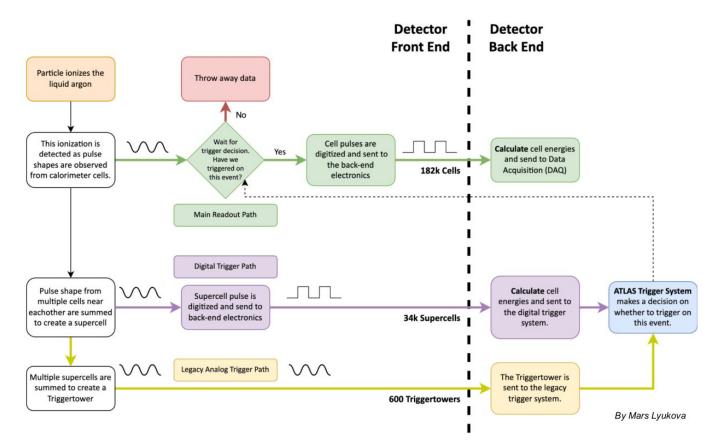
(1)

(3)

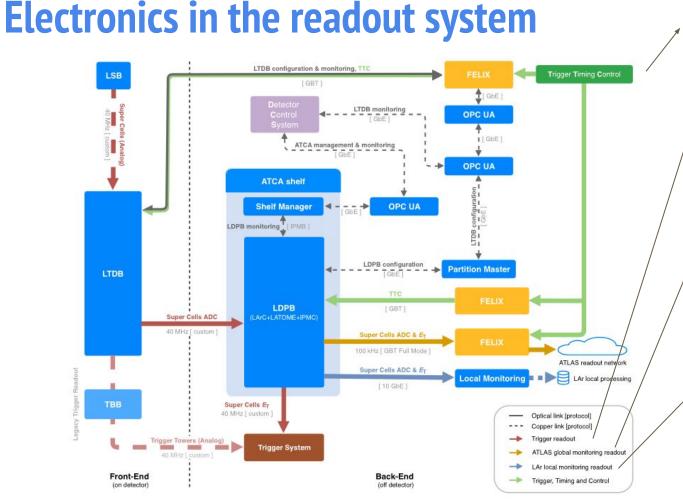
 f_3 The ratio of the transverse energy measured in the back EM layer (3) in an area of size $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ to that deposited in all three layers for an EM cluster; the energies in the front (1) and middle (2) EM layers are reconstructed in the area $\Delta \eta \times \Delta \phi = 0.075 \times 0.2$:

$$f_3 = \frac{E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.2\times0.2}^{(3)}}{E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.075\times0.2}^{(1)} + E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.075\times0.2}^{(2)} + E_{\mathrm{T},\Delta\eta\times\Delta\phi=0.2\times0.2}^{(3)}}.$$
 (2)

 $w_{\eta,2}$ The spread of the shower in the middle EM layer (2) in a 3×2 Super Cell region, defined as:


$$w_{\eta,2} = \sqrt{\frac{\Sigma \left(E_{\rm T}^{(2)} \times \eta^2\right)_{\Delta\eta \times \Delta\phi = 0.075 \times 0.2}}{E_{{\rm T},\Delta\eta \times \Delta\phi = 0.075 \times 0.2}^{(2)}} - \left(\frac{\Sigma \left(E_{\rm T}^{(2)} \times \eta\right)_{\Delta\eta \times \Delta\phi = 0.075 \times 0.2}}{E_{{\rm T},\Delta\eta \times \Delta\phi = 0.075 \times 0.2}^{(2)}}\right)^2},$$

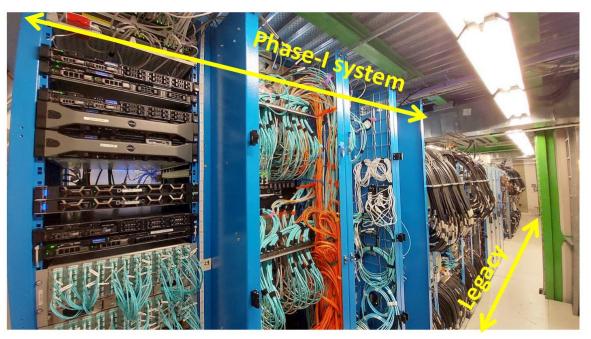
ATLAS 10^{-1} Simulation $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80}$ 10^{-2} 10^{-3} - Electrons $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80}$ 10^{-4} $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80}$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80}$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80}$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 80$ $\int_{\sqrt{s} = 14 \text{ TeV}, \mu = 14$

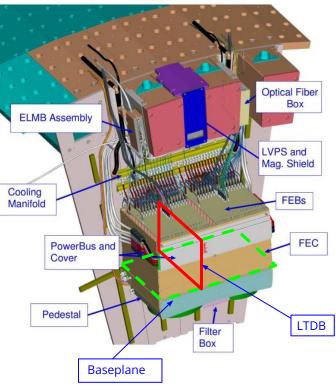

where the sums run over the Super Cells.

LAr readout path

TTC synchronized with LHC reference clock, determination of the collision time of an event via its BCID

Digital Trigger - full line, Analog Trigger - dashed line


Purpose is to **verify that the** E_T sent to the trigger system is correct, by reading the SCs ADC data and the E_T values for all events selected by the L1A (recomputation of the calculation performed on the LATOMEs)


LAr specific local monitoring not connected to the ATLAS main readout - can operate independently, at L1A rate but also at any other rate

Visual comparison of AT vs DT

Front-end (on-detector)

Back-end (off-detector)

Digital Trigger system benefits significantly from the signal digitization on detector

Details about energy computation

$$E_{\text{cell}} = F_{\text{DAC} \to \mu\text{A}} \cdot F_{\mu\text{A} \to \text{MEV}} \cdot \frac{1}{\frac{M_{\text{phys}}}{M_{\text{cali}}}} \cdot G_1 \cdot \sum_{i=1}^{N^{\text{samples}}} a_i (s_i - p)$$

- $F_{\text{DAC} \rightarrow \mu A}$ = sampling fraction, converts calibration board DAC counts to current
- $F_{\mu A \rightarrow MEV}$ = factor which converts ionisation current in the calorimeter to total deposited E, from test-beam studies
 - $\frac{M_{phys}}{M_{cali}}$ = ratio of maxima of physical and calibration pulses with the same input current
 - G_1 = cell gain ADC to DAC from calibration pulse
 - *a_i* = Optimal Filtering Coefficients (OFCs), derived from predicted pulse shape & noise autocorrelation
 - s_i = samples of the shaped signal digitised in a given electronic gain, measured in ADC counts
 - *p* = read-out electronic pedestal, measured for each gain

Three types of electronic calibration runs, **pedestals**, **ramps** and **delays** provide many of the inputs required for cell energy computation (as well as timing & quality factor).

