

PRECISION TIMING WITH THE CMS MIP TIMING DETECTOR FOR HIGH-LUMINOSITY LHC

Fabio Cossutti (INFN Trieste) on behalf of the CMS Collaboration

ICHEP 2024 – Prague (Czech Republic) 18 July 2024

Outline

- Physics motivation
- Detector overview
 - approved in 2019
- Barrel Timing Layer
 - assembly to start ~ now
- Endcap Timing Layer
 - assembly to start in 2026
- Physics exploitation

<u>CMS-TDR-020</u> <u>CERN-LHCC-2019-003</u>

- HL-LHC luminosities needed to integrate 3 ab⁻¹ will imply a significant increase in average pileup compared to Run1/2/3
 - ranging from $\langle PU \rangle \sim 140$ till $\langle PU \rangle \sim 200$
- Pileup rejection key tool: charged track association to reconstructed vertices
 - based on excellent tracker resolution, its efficiency depends on vertex line density along beam axis

 As line density increases above 1/mm, tracker alone less and less efficient in pileup rejection, despite the upgrade

F. Cossutti

3

- |dz| < 1 mm typical track-vertex association criterion
- more pileup spoils physics objects quality: jet scale and resolution, b-tagging, lepton isolation,...

A timing detector for HL-LHC: why?

 Beam spot rms O(5 cm) ⇒ ~ 200 ps, i.e. space-overlapping vertices can be separated in time by hundreds of ps

- If track time at the beam line can be measured with a higher precision, $\mathcal{O}(30 40 \text{ ps})$, use time to distinguish them!
- $3D \rightarrow 4D$ vertex reconstruction may bring back to a LHC-like density in separate time frames
 - i.e. existing PU rejection strategies can be successfully used again

 Time resolution vs line density determines how well pileup rejection works

Physics benefit : PU rejection and PID

- Better physics objects equivalent to more integrated luminosity
 - better MET selection, b-tagging, lepton isolation efficiencies
- E.g. double Higgs search
 - CMS-DP/2022-025

35 ps BTL, 35 ps ETL						
Channel	No MTD	ETL Only	BTL Only	MTD		
bbbb	0.88	0.90	0.93	0.95		
bb au au	1.30	1.38	1.52	1.60		
$bb\gamma\gamma$	1.70	1.75	1.85	1.90		
Combined	2.31	2.40	2.57	2.66		

50 ps BTL, 50 ps ETL

Channel	No MTD	ETL Only	BTL Only	MTD
bbbb	0.88	0.90	0.93	0.95
bb au au	1.30	1.36	1.44	1.50
$bb\gamma\gamma$	1.70	1.72	1.78	1.80
Combined	2.31	2.37	2.47	2.53

- significance gain equivalent to a luminosity increase from 20 to 31%
 - depending on achievable resolution

 Track time propagation needs a mass hypothesis

Extra physics gain: new physics search

Timing capabilities may be useful in various LLP scenarios and HSCP searches

CMS approach: Mip Timing Detector

BTL: sensor technology

LYSO:Ce scintillator

- arrays of 16 bars, bar: 3.75×3.12×54.7 mm³ –
- fast response (40 ns decay time) and dense (~ 4.2 MeV/MIP)
- high light yield (40k photons/MeV) ⇒ reduced photostatistics uncertainty
- radiation hard up to tens of kGy
- Dual SiPM readout, one at each bar end
 - 25 μm cell size, with thermoelectric (TEC) coolers

 $t_{ave} = (t_1+t_2)/2 \sim independent on position, \sigma(t_{ave}) = \sigma(t_{1,2})/\sqrt{2}$

8

TOFHIR readout ASIC: 2024 JINST 19 P05048

- high gain + noise filter
- Differential Leading Edge Discriminator: delayed and inverted signal overlapped to squeeze it in 25 ns

BTL: S/N response optimization

- Maximize light output
 - maximal crystal thickness everywhere
 - optimized LYSO packaging
- Optimized cell size
 - larger size: better Photon Detection Efficiency (PDE) and SiPM gain
 - higher PDE permits lower overvoltage operations ⇒ smaller noise impact
 - trade-off with power consumption
- Dark Count Rate (DCR) reduction
 - radiation damage to SiPM: DCR expected ~ tens of GHz at End-of-Life (EoL)
 - limit with cooling, CO₂ at -35 C⁰
 - TEC coolers during operations: -35 C⁰ \Rightarrow -45 C⁰
 - in situ annealing cycle outside operations
 - partial damage recovery, exploiting also TECs with reverse bias

18/7/2024

BTL: achievable performances

number of photoelectrons N_{pe} determines main resolution components

CMS-DP/2023-093

Crystal thickness:

Type 1 3.75 mm

 Optimization strategy allows resolution at EoL to stay within TDR expectation of ~ 60 ps

 detector choice mitigates its deterioration with integrated luminosity

ETL: sensor technology

Low Gain Avalanche Diode

- LGAD 16 × 16 pads (1.3 × 1.3 mm² each)
- 50 μm active layer, > 8 fC at EoL
 - trade-off between signal size and primary ionization time jitter

Ultra Fast Silicon Detector E field

- gain (10 30) for better S/N ratio
- suitable for 1×10¹⁵ n_{eq}/cm² fluence in the innermost region
- ETROC readout ASIC
 - bump-bonded on LGAD
 - single TDC measuring Time Of Arrival (TOA) and Time Over Threshold (TOT)
 - LGAD + ETROC ~ 50 ps

- 0.30 m < R < 1.19 m
- ~ 85% tracks with two measured hits
- ensuring target of ~ 35 ps total time resolution per track

ETL: LGAD radiation hardness

CMS-DP/2024-035

- Sensor optimization done with multiple vendors
- Target performance at EoL achievable by increasing voltage
 - LGAD irradiated with β Sr₉₀ source
- Test beams show single Event Burn-out when E field > 11 V/μm
 - but target performances achievable below this field
- And excellent efficiency and resolution
 - 5×5 pads, non irradiated

ETL: performance validation

- 1 (BTL)/2 (ETL) MTD hits / track
 - time at MTD surface needs to be extrapolated back to beam line
 - we measure track momentum, speed depends on mass hypothesis, important at low p
- Resolve track mass ambiguity with "equal time at origin vertex" constraint
 - 4D vertex reconstruction is both a clustering and a classification (PID) problem

F. Cossutti

14

- Iterative approach: initial mass hypothesis (π) refined after first vertex reconstruction
 - Add time term in Deterministic Annealing for clustering

Vertex time

- average track time
- or new time determination with a dedicated
 Deterministic Annealing algorithm combining all mass hypotheses (π/K/p)
- CMS-DP/2024-048

Summary

- The MTD detector is moving from design and R&D towards construction
 - BTL technology fully validated, assembly to start this summer
 - ETL design reaching maturity in its components, on track for assembly in 2026
- The physics exploitation of MTD will be a test bench for usage of modern timing measurement capabilities in future collider experiments