

The CMS Level-1 Trigger Data Scouting system for the HL-LHC upgrade

E. Meschi - CERN EP/CMD For the CMS Collaboration emilio.meschi@cern.ch

ICHEP 2024 - PRAGUE 19.07.2024

Outline

- The Phase-2 (HL-LHC) CMS trigger upgrade
- L1 Scouting: concept and motivation
- Baseline design
- Physics case
- The Run 3 demonstrator
- Summary

CMS L1 Trigger Phase-2 Upgrade

At HL-LHC: peak instantaneous **luminosity** up to **7.5x10³⁴ cm⁻²s⁻¹**, up to **200 Pile-Up** per crossing –entails a major detector upgrade, including both trigger stages

Goals of the L1 upgrade:

- Optimally exploit HL-LHC data and extend sensitivity to new physics
- Maintain Run-3 thresholds for all basic trigger objects in the presence of high pileup
- Improve capability to efficiently select specific signatures
- Extend reach for new physics searches

CMS L1 Trigger Phase-2 Upgrade

At HL-LHC: peak instantaneous luminosity 7.5x10³⁴ cm⁻²s⁻¹, up to 200 Pile-Up per crossing L1 upgrade: exploit tracks at L1, finer granularity calorimeter and refined muon primitives

Extended muon coverage and granularity, displaced muons
High(er) granularity calorimeter primitives
Tracking at L1 for pt>2 GeV, up to

- ' |η|<2.4 improves resolution of all objects
- Particle Flow reconstruction
 Pileup subtraction using PUPPI*
 State-of-the-art FPGAs enabling
 ML-based approach
 Sophisticated multi-object, multi-
- **BX selection** and **NNs** in the
- Global Trigger

(*) PUPPI: PileUp Per Particle Identification

Phase-2 L1: performance

Particle flow objects combine tracker and calorimeter information to attain best resolution

Threshold [GeV]

What may be missed

- The Phase-2 L1 trigger will be a very capable system
 - **Tracking** at L1 enables reconstruction of **exclusive signatures**
 - In many cases close-to-offline resolution thanks to the inclusion of tracking and particle flow
 - Control over pileup
 - Access to displaced objects
- Possible additional ground to cover ?
 - Physics that does not fit into the **total accept rate** (dictated by the readout b/w of some detectors and offline storage and processing capacity)
 - Channels whose combinatorics or complexity exceed latency constraint, or "computing" capacity - (latency is dictated by length of readout pipelines, complexity limited by the [albeit very large] amount of logic available in FPGAs)
 - Exotic signatures with orthogonal requirements to "mainstream" physics.

L1 Data Scouting

- A Level-1 Trigger Data Scouting system collecting and analysing L1 objects produced for every bunch crossing:
 - Has **full access to physics** otherwise constrained by the L1 latency and maximum accept rate...
 - Potentially enables the exploration of additional exotic signatures
 - A powerful tool to study correlations over several bunch-crossings, for diagnostics and physics
- Acquire and process the trigger objects produced by the L1 processors at the accelerator bunch-crossing rate of 40 MHz
- Caution! trigger primitives
 - Trigger primitives are designed to provide best and well-understood efficiency for physics objects and to control the accept rate
 - This does not necessarily translate into objects that are easy to use for physics
 - For example: sharp turn-on at threshold != (always) best accuracy
 - **Features** could be introduced by limitations of the processing hardware / transport protocols and their bandwidth
 - Objects calibration may not be optimal for physics
 - Detailed simulation studies needed to explore the capabilities of a scouting system

Phase-2 L1DS: Principle

CERN

Baseline Possible

extensions

Phase-2 L1DS Baseline: how

Phase-2 L1DS Baseline: what

- 1. All candidate objects feeding the final GT algorithms
 - Calorimeter and muon objects from standalone processors
 - Tracker objects (PV, multi-track objects) from GTT
 - PUPPI objects (electrons, jets, etc.) from Correlator Layer
 2 and the final GT decision itself
- 2. Pileup-subtracted candidates and Particle-flow candidates (optionally) prior to L2 processing

Extensive diagnostic and monitoring capabilities Physics with PUPPI objects without rate limitations

Do own jets, electrons, etc. – without latency limitations Full combinatorics with PUPPI candidates (for exclusives, etc.) Alternative pileup subtraction approaches

Source	Links (baseline)	Links (upstream ZS)
GT	12	12
GTT	24	24 + 48 (Tracks ZS)
GCT	6	6
GMT	18	18
CL2	30	30 + 24 (PUPPI ZS)
CL1	216 (PUPPI)	84[*] (PF η ≤3 ZS)
Total	306	246

Physics Case I

Bold = ongoing studies with L1 scouting

- Soft hadronic final states
 - 1. Classic dijet resonance searches in regions of phase-space inaccessible to standard L1 (no rate limitation, PF-jet resolution)

Current low-mass searches use boosted jets and jet substructure

- 2. Multiple jet final states in general, that can benefit from a cut-and-count approach less sensitive to L1 jet features
- 3. High multiplicity unclustered hadronic final states (from different models, including or not a "dark" sector)

More on 1. later

Physics Case II

Standard Model rare decays

1. Exclusive rare Higgs decay channels $H \rightarrow J/\psi\gamma, H \rightarrow \phi\gamma, H \rightarrow \rho\gamma,...$

Tiny BRs, can all be selected with single photon triggers, but mind efficiency

2. Radiative W decays (such as $W \rightarrow \pi\gamma$, $D_s\gamma$)

Currently (Run 3) using W from $\bar{t}t$

3. All-hadronic SM boson decays

 $H \rightarrow \phi \phi, W \rightarrow \pi \pi \pi,$

potentially challenging computationally and latency-wise due to large combinatorics

Bold = ongoing studies with L1 scouting

Physics Case III

Bold = ongoing studies with L1 scouting

- Flavor anomalies, τ physics
 - 1. Single and multiple τ final states can benefit from scouting because of notorious difficulties in controlling trigger rate
 - 2. The $B_s \rightarrow \tau \tau$ decay (requiring high efficiency τ selection at low-p_t) e.g. $\tau \rightarrow 3 \pi + X$
 - 3. The decay $\tau \rightarrow 3 \mu$, where acceptance for low-pt muons (not necessarily fully reconstructed) is key
- Dark sector
- LLP and vLLP, displaced muons and jets
 - 1. Bridge the gap between small displacement (tracks) and large displacement (standalone objects), for example by **relaxing muon-track matching**
 - 2. Look for multi-BX correlation as a signature of slow charged particles
- Anomaly Detection using all available L1 information at the BX rate

A L1DS demonstrator for Run 3

Collect global muon candidates, calorimetric candidates (Jets, $e/\gamma,\tau$,energy sums), barrel muon stubs, GT bits

Demonstrate the complete chain L1 → DAQ → online processing → storage "Orbit" building Online processing using standard CMS reco/analysis software Produce standard datasets for offline analysis

Uses two VCU128 board ≈ one **DAQ800 board**

Processing+Characterization

CERN

See poster by S. Giorgetti

Run 3 example: soft jet physics

Level-1 trigger scouting 2024 (260 pb⁻¹, 13.6 TeV)

200

400

600

800

1000 Jet E_T [GeV]

Summary

- L1 Trigger Data Scouting promises to complement the "standard" CMS HL-LHC physics program
- A well-established baseline design using technology and approach mediated in part from Phase-2 DAQ upgrade
- A wealth of physics cases to study in detail
- Run-3 demonstrator successfully operating since 2023 an important testing ground
 - Stay tuned for physics results

See also

<u>176. New CMS trigger strategies for the Run 3 of the LHC</u> (earlier in this parallel session)

<u>175. Overview of the HL-LHC Upgrade for the CMS Level-1 Trigger</u> (in parallel session 14...now)

<u>754. Performance of CMS Level-1 Trigger Data Scouting during LHC Run 3</u> (poster session)

Backup

CMS L1 Trigger Phase-2 Upgrade

At HL-LHC: peak instantaneous luminosity 7.5x10³⁴ cm⁻²s⁻¹, up to 200 Pile-Up per crossing Goal of the L1 upgrade: To optimally exploit HL-LHC data and extend sensitivity to new physics

Maintain Run-3 thresholds for all trigger objects in the presence of high pileup

Use particle-flow approach

Local Improve capability to efficiently select specific signature e.g.:

- Global VBF, rare b-meson decays
 - exclusive decays
 - displaced objects

Expand reach for NP searches e.g.

- low-mass jet resonances
- Anomaly detection

Be ready to trigger the unexpected, e.g.:

- Appearing/disappearing tracks
- Soft unclustered energy
- Slow charged particles

CMS already pioneered alternative data handling strategies

- Data-parking exploits additional DAQ b/w and offline storage to collect samples with delayed processing [O(5 kHz) today]
- HLT scouting exploits the availability of full-resolution data at HLT to perform online reconstruction, storing only high-level event information ready for analysis, at rates O(30 kHz) today, enabling specific physics studies requiring high rates but compatible with less-than-perfect calibration and reconstruction

CMS already pioneered alternative data handling strategies

- What with physics that is hampered or severely limited by the L1 accept budget or the bias the L1 selection introduces ?
- Level-1 Scouting aims at removing the last limitation by giving access to the L1 primitives at the full bunch-crossing rate

"40 MHz Scouting" concept

Formats and datasets

OrbitCollections repacked and stored as "standard" CMS data (one orbit = one CMSSW event)

		Paramete	er		Range	Step	Bits
	Transver	se momentum		p_{T}	[0, 256] GeV	0.5	9
	Unconstr	ained transverse m	omentum	$p_{\rm T}^{\rm uncon.}$	[0, 256] GeV	1.0	8
	Azimutha	al angle		ϕ	2π	$2\pi/576\sim0.011$	10
	Azimutha	al angle extrapolate	d at vertex	ϕ_{ext}	2π	$2\pi/576\sim0.011$	10
	Pseudora	pidity		η	[2.45, 2.45]	0.0870/8 = 0.010875	9
\sim	Pseudora	pidity extrapolated	at vertex	$\eta_{ m ext}$	[2.45, 2.45]	0.0870/8 = 0.010875	9
ų,	Charge s	ign (+ valid)		q	-1, 1		1 (+1)
	Quality			Q	[0, 12]	4	4
	Impact p	arameter		d _{XY}	0, 1, 2, 3		2
	Isolation	bit		iso			2
	Track fin	der index		index	[0, 107]	1	7
	Bunch cr	ossing number		BX			32
	Orbit cou	unter		OC			32
= .					-		
	object	coll. × inst.	parame	ter	range	step	
	jet	1 × 12	Et		01024 GeV	0.5	
			n		-5 5	0.0435	

	jet	1 × 12	E_t η φ DISP quality flags	01024 GeV -55 2π	0.5 0.0435 ~0.044
D.	e/γ	1 × 12	E _t η φ iso	0256 GeV -55 2π	0.5 0.0435 ~0.044
CAL	tau	1 × 12	E_t η φ iso	0256 GeV -55 2π	0.5 0.0435 ~0.044
	ET	1×1	E_t [ET] E_t [ETTEM]	02048 GeV 02048 GeV	0.5 0.5
	ET _{miss}	1 × 1	$egin{array}{c} E_t \ arphi \end{array}$	02048 GeV 2π	0.5 ~0.044
	HT	1 × 1	E_t [ET]	02048 GeV	0.5
	HT _{miss}	1 × 1	$egin{array}{c} E_t \ arphi \end{array}$	02048 GeV 2π	0.5 ~0.044

GMT

Phase-2 L1DS Baseline: what

Link count based based on current design of different L1 processors – estimates on

- Links from GT boards
- Links from all sub-systems feeding GT (same number of links go to scouting as to GT): GTT, GCT, GMT, and Correlator Layer 2
- Enough links to collect all PUPPI candidates from Correlator Layer 1 (non zero-suppressed)
- Total of 296 links at 25 Gb/s (nominal input throughput of 7.4 Tb/s)
- Link count is (should be) based on maximum multiplicity (i.e. most fixed-size frames will not be full)
- With some zero suppression in the upstream systems, can capture more: PF, tracks

Source	Links (baseli ne)	Links (upstream ZS)
GT	12	12
GTT	24	24 + 48 (Tracks ZS)
GCT	6	6
GMT	18	18
CL2	30	30 + 24 (PUPPI ZS)
CL1	216 (PUPPI)	84[*] (PF η ≤3 ZS)
Total	306	246

Available links with seven DAQ800: 224 full links (no ZS possible) 336 maximum (30% compression required)

[*] rough estimate, more study needed. PF $|\eta|$ > 3 would need to come from GCT

Run 3: DT stubs from BMTF

Collect input stubs for barrel muon Drift Tubes (DT) from Barrel Muon Track Finder (BMTF) Extract **muon parameters** from stubs **using regression** Use to sharpen unconstrained p_T , impact parameter resolution E.g. "soft" displaced muon pairs

http://arxiv.org/pdf/1603.08926v1.pdf

Multi-BX

Combine DT stubs across subsequent BXs

look into reconstructing "slow charged objects" traversing the muon chambers

