

The CMS ECAL upgrade for the High-Luminosity LHC

<u>Chiara Basile</u>* on behalf of the CMS Collaboration

*Università di Roma La Sapienza, INFN Roma, CERN

High Luminosity LHC and CMS ECAL

- conditions \rightarrow check <u>Fabio's</u> talk for more details!

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

High Luminosity Upgrade for LHC (HL-LHC) targets more than twice the current instantaneous luminosity and pile-up

• New data-taking conditions demand for a full renovation of the CMS electromagnetic calorimeter ECAL electronics

ECAL barrel upgrade physics goals

Goal: restore ECAL performance to LHC Phase1 o compensate for energy resolution loss from detector aging \rightarrow impacting σ_E/E constant term

- Detector performance target: keeping e^{\pm} and $\gamma \sigma_E / E < 1\%$ and improving timing resolution up to $\sigma_t < 30 \text{ ps}$ (at E $\geq 50 \text{ GeV}$)
 - o precise γ time of flight measurement \rightarrow efficient association reconstructed photon to vertex !
 - keep good resolution on $H \rightarrow \gamma \gamma \rightarrow$ reduce γ opening angle uncertainty down to be negligible w.r.t. energy resolution

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

compared to Phase1

On detector readout electronics

CMS-TDR-015

Operational temperature $18^{\circ}C \rightarrow 9^{\circ}C$ o reduce APDs dark current and o +20% scintillation light yield

 $PbW0_4 CMS, X_0=0.89 cm$

100 nF

On detector readout electronics

CMS-TDR-015

Operational temperature $18^{\circ}C \rightarrow 9^{\circ}C$ o reduce APDs dark current and +20% scintillation light yield

 $PbW0_4 CMS, X_0=0.89 cm$

- ASICs : preamplifier \rightarrow ADC + gain selection + data compression
 - 2x transimpedance amplifiers (gain=1 or gain=10)
 - 2x ADCs sampling frequency 160 MS/s &12bit resolution (40 MS/s legacy)

Front End (FE) cards

- Radiation tolerant optical transmission system
 - o single crystal granularity data stream to off-detector boards (x25 granularity w.r.t. legacy)
- Shorter pulse shaping + higher sampling rate
- \rightarrow noise reduction, pile up mitigation

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

Very Front End (VFE) cards

Off detector back-end

CMS-TDR-015

Barrel Calorimeter Processor (BCP)

- FPGA based data aggregator :
 - o back-end off-detector \rightarrow latency 12.5 μ s (4 μ s legacy)
 - o digitized pulses \rightarrow transverse energy conversion
 - * single crystal granularity to CMS L1 trigger cards
 - * basic clustering for prompt time/energy reconstruction → **spike rejection**
 - **Spikes** = particles directly ionizing in APD bulk
 - Single channel large energy deposit
 - HL-LHC : spike events would saturate L1 trigger bandwidth
 - → faster pulse shape w.r.t. scintillation → discrimination
 enabled by ECAL upgraded FE
 - → BCP spikes suppression → keep L1 transverse energy threshold $E_T \sim 10$ GeV

Test beam campaigns

- Test beam campaign at CERN, SPS/H4 beamline : very pure e^{\pm} beam $\Delta p/p = 0.5 \%$ in [25, 300] GeV
- Test beams have driven prototypes improvements up to their **final design** • VFE v3.0 reduces jitter w.r.t. input clock \rightarrow pre-production is happening now \circ FE v3.3 boards reached stable data transmission architecture \rightarrow ready for production • **BCPv2** firmware and layout near completion
- Next tests beam \rightarrow test final prototypes & optimize data stream synchronization

Test beam setup in a nutshell

Energy resolution results

- Monochromatic beam hitting one crystal center
- Energy resolution of 3x3 channel matrix around the target crystal $\rightarrow \sim 95\%$ e.m. shower containment
 - N : noise term fixed from dedicated noise study in the 9 channels
 - S : stochastic term compatible with Phase1 measurement (0.028 GeV^{1/2}) ✔ 2007 JINST 2 P04004
 - **C** : constant term < 1% for E > 50 GeV

Relative time resolution results

- Monochromatic beam hitting edge between two neighboring crystals
- Arrival time difference spread \rightarrow gaussian fit in bin of signal effective amplitude
 - o assuming same time resolution in both channels
 - C constant term < 30 ps within the target for HL-LHC ✓</p>
- **Ongoing analysis**: single channel timing resolution w.r.t. MCP time reference

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

CMS ECAL *Preliminary* Beam Test 2023, H4/SPS

Conclusions and future plans

- ECAL barrel readout electronics is being fully upgraded for HL-LHC • APDs and PbWO₄ crystals will remain operational
- The upgrade target
 - o mitigating radiation induced noise and pile-up
 - fast data transmission to match **L1 trigger rate**
 - Phase1 energy resolution and **improved timing** resolution ($\sigma_t < 30$ ps)
- Performance tested successfully during several test beam campaigns
 - \circ energy and time resolution within the requirements \checkmark
- Full readout chain is being tested since 2022 campaign
 - o components design is almost **fully finalized**
- Component production already happening

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

o testing/optimizing data streaming and components synchronization \rightarrow next campaigns foreseen in fall 2024 and 2025 !

High Luminosity LHC

High Luminosity Upgrade for LHC (HL-LHC) targets unprecedented instantaneous luminosity and pile-up conditions CMS 2024 Run3 conditions compared to HL-LHC baseline (ultimate) target:

- - o instantaneous luminosity $\mathcal{L} = 2.0 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \rightarrow \mathcal{L} = 5.0 \,(7.5) \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

o peak pile-up PU = $65 \rightarrow 140$ (200)

New data-taking conditions demand for a full renovation of many CMS sub-detectors

Chiara Basile - CMS ECAL upgrade for HL-LHC - ICHEP24

increase trigger **rate** :100kHz \rightarrow 750kHz **latency :** $4\mu s \rightarrow 12.5\mu s$

shorter pulse shaping & faster transmission bandwidth

hardware/software spurious events discrimination

improve detector radiation tolerance

CMS electromagnetic calorimeter (ECAL)

Homogeneous calorimeter \rightarrow 75848 lead tungstate (PbWO₄) scintillating crystals

- o high density $\rho = 8.28$ g/cm⁻³
- o short radiation length $X_0 = 8.9$ mm and small Moliere radius $R_M = 23$ mm
- o fast light emission: ~80% of scintillation light in 25 ns

- Central Barrel $|\eta| < 1.48$
 - o quasi-projective crystal geometry towards the collision point
 - o crystals scintillation read by Avalanche Phododiodes (APD)

• Forward Endcaps 1.48 < $|\eta|$ < 3.0

o crystals scintillation read by Vacuum Phototriodes (VPT)

PbWO4 crystals & APDs longevity

- PbWO₄ crystals radiation damage impacts on scintillation light yield o retain 20-40% light output for 3000 fb-1 int. luminosity o impact on energy resolution constant term
- ECAL barrel photosensors will operating at 9° during HL-LHC limit increasing APDs leakage current from radiation damage o increase light yield recovery time

Spike killing algorithm for HL-LHC

ECAL signal reconstruction

Quality cuts

- Hodoscope plates beam transverse position
- Micro Plate Chambers (MCP) ($\sigma_t/t = 15$ ps) particles arrival time reference

Particle signal reconstruction

- Template fit to digitized pulse shape \rightarrow signal amplitude and arrival time
- Signal amplitude distribution for given beam energy o average signal amplitude and width \rightarrow linearity and energy resolution
- Time difference distribution between
 - \circ 2 neighboring channels \rightarrow relative timing resolution

Single channel response with ASIC prototypes

- **2021 TB** : complete Very Front End ASICs (CATIAv1.4+LiTeDTUv1.2)
- Single crystal response for different beam energies o templates from pulse shapes aligned in time o normalized templates not depending on incident particle energy V
- Test signal amplitude linearity w.r.t. beam energy o maximum deviation from linearity < 0.3% with only statistical uncertainty 🗸
 - ECAL linearity tested also in lab and proved at CMS

2018 results

- Energy resolution of **3x3 channel matrix** around the target crystal
 - N : noise term fixed from dedicated noise study in the 9 channels
 - S: stochastic term compatible with Phase1 measurement (0.028 GeV^{1/2}) ✓ 2007 JINST 2 P04004
 - **C** : constant term < 1% for E > 50 GeV

