Precision luminosity determination in CMS

Peter Major on behalf of the CMS Collaboration

ICHEP2024, 2024. 07. 19.

Introduction

Luminosity

• connects theory and experiment

 $\langle N_{total} \rangle {=} \sigma_{process} L_{int}$

 is amongst the leading sources of experimental uncertainties in SM precision measurements

It is measured using benchmark physics processes like Bhabha-scattering in lepton colliders, but hadron colliders pose many challenges due to the non-trivial PDFs

Detectors

BCM1F has multiple backends

Multiple independent systems (*luminometers*) are utilized for best accuracy Drift Tubes (DT) **Pixel Cluster Counting (PCC)** L1 trigger primitives/objects On all except the first barrel layer Independently **Cross-calibrated** + veto list of modules calibrated Online BCM1F*, HF*, PLT DT, RAMSES (Run3) Hadron Forward Calorimeter (HF) η-rings 31 & 32 Offline PCC RAMSES (Run2) Two algorithms: Occupancy based (HFOC) ΣE_{+} (HFET) RAMSES **RAdiation Monitoring** System for the **Environment Safety Pixel Luminosity Telescope (PLT)**, **Beam Condition Monitor (BCM1F)** Luminosity + beam induced background

An overview of the lumi measurement

The hit rate (or deposited energy) is directly proportional to the instantaneous luminosity. The coefficient is the calibration constant of the detector: σ_{vis}

$$R(t) = \sigma_{\rm vis} L_{\rm inst}(t)$$

- Deposited transverse energy for HFET
- Actual counting for PCC, DT, RAMSES
- Occupancy measurement via zero counting (PLT, BCM1F*, HFOC)

$$\mu = -ln(P_0)$$

BRIL

- Potential effects:
 - Spillover of signal (Type I Afterglow)
 - Background due to activation (Type II Afterglow)
 - Stability of the detectors
 (e.g. radiation damage)
 - Linearity of measurement
 - > Zero starvation

The van der Meer method

The van der Meer method

Difficulties:

- Background of detectors
- Accuracy of bunch proton count measurement
- Accuracy of beam position
 - Orbit drifts
 - Beam-beam deflection
 - Length scale
- Factorizibility of beam overlap shape (a leading source of uncertainty)
- Bunch shape distortion due to beam-beam EM forces

Length scale calibration (LSC)

- Neither the nominal nor the BPM measured beam positions correspond to real values accurately
- The tracker position is considered as reference
- The relationship is linear $x_{true} = \alpha x_{nominal}$
- Two special scans used for LSC
 - Constant separation LS scan
 - Average LS for B1&B2
 - Variable separation LS scan
 - Separate LS for B1&B2

Beam position systematics

Beam position systematics

Measured using

- Arc beam position monitor (BPM)
- DOROS BPM

Typical OD uncertainty in 2022-2023: ~0.2% Large improvement since 2015-16 paper (0.5-0.8%)

Contributes:

- Orbit drift
- Beam-beam deflection (partial effect from Bassetti-Erskine formula)
- ♦ Residual effects ← clear difference based on scan direction:

Non-factorisation

Multiple methods used:

2D scans

- Fits the bunch overlap shape directly
- Using complementary scans for off-axis sampling
- All BCIDs are used
- Luminous region analysis

BRIL CMS

Non-factorisation

Multiple methods used:

- 2D scans
- Luminous region analysis
 - Fits the 3D bunch density function for the two beams
 - Using any scans
 - For few BCIDs with high rate vertex data

Non-factorization uncertainty: 2022 (prelim): 0.8% 2023 (prelim): 0.7%

Consistency, stability

- Closure of detectors checked in the vdM fill
- Efficiency of applicable detectors is tracked and corrected for independently using emittance scans
- Spread of detectors is tracked throughout the whole year
 - Uncertainty derived from the RMS the mean of all histograms

10

15

Integrated luminosity [fb-1]

CMS Preliminary

5

1.04

S

Luminosity ration in 50

0.96

0

BCM1FUTCA/REF

20

25

BCM1F/REF

0.96

0.94

0.96

0.98

1.00

30

1.04

1.02

Z counting

- $Z \rightarrow \mu \mu$ has *
 - a clean signature >
 - large cross section >
- Trigger and selection efficiencies are measured in situ * every 20/pb
- *

Fill 6255, 13 TeV (2017)

- Ref. luminosity

+ Z boson rate

CMS

lnst. lum. [nb⁻¹s⁻¹]

12.5

10.0

7.5

5.0

Run2 PbPb results

Source	2015 [%]	2018 [%]	Corr
Normalization unce	ertainty		
Bunch population			
Ghost and satellite charge	0.3	0.5	Yes
Beam current calibration	0.2	0.2	Yes
Noncolliding bunches			
Noncollision rate	0.5	0.2	No
Beam position monitoring			
Random orbit drift	0.5	0.1	No
Systematic orbit drift	0.2	0.2	Yes
Beam overlap description			
Length scale calibration	0.5	0.5	Yes
Beam-beam effects	0.2	0.3	Yes
Transverse factorizability	1.1	1.1	No
Result consistency			
Cross-detector consistency	2.5	0.4	No
Scan-to-scan variation	_	0.5	No
Statistical uncertainty	0.2	0.1	No
Integration uncer	tainty		
Detector performance			
Cross-detector stability	0.7	0.8	No
Noncolliding bunches			
Noncollision rate	0.1	0.1	Yes
Total normalization uncertainty	2.9	1.5	
Total integration uncertainty	0.7	0.8	
Total uncertainty	3.0	1.7	

	Recorded	Uncertainty		Total
year	luminosity $[nb^{-1}]$	correlated	uncorrelated	uncertainty [%]
2015	0.43 ± 0.01	0.7%	2.9%	3
2018	1.7 ± 0.1	0.8%	1.5%	1.7
Combined Run 2	2.132	$\begin{array}{c} 0.003\mathrm{nb^{-1}}\ (2015)\\ 0.014\mathrm{nb^{-1}}\ (2018) \end{array}$	0.028 nb^{-1}	1.5

Proton-proton luminosity calibration results

	Source	Uncertainty	(%)
с Ц	Calibration	24- 	
	Beam current	0.20	
	Ghosts & satellites	0.10	
	Orbit drift	0.02	
Ţ	Residual beam positions	0.16	
\overline{O}	Beam-beam effects	0.34	
Z	Length scale	0.20	
/ fc	Factorization bias	0.67	
S S S	Scan-to-scan variation	0.28	
ž	Bunch-to-bunch variation	0.06	
	Cross-detector consistency	0.16	
	Integration		
	Cross-detector stability	0.71	
	Cross-detector linearity	0.59	
	Calibration	0.89	
	Integration	0.92	Similar uncertainties
5	Total	1.28	in int. & cal.

2015	1.6%	Published paper		
2016	1.2%			
2017	2.3%	<u>prelim</u>	Paper in preparation	
2018	2.5%	<u>prelim</u>		
2022	1.4%	<u>prelim</u>	Paper in future	
2023	1.28%	prelim	Paper in future	

Thank you!

\$1

F

Emittance scans

- Luminometers are intrinsically corrected for all linearity affecting effects
- Emittance scans are treated like mini vdM calibrations
- Linearity and efficiency corrections

Linearity

- Luminometers are intrinsically corrected for all linearity affecting effects in situ
 - Data driven out-of-time corrections
 - Linearity from emittance scans
- Residual relative non-linearity is studied with respect to DT and RAMSES
 - Very low occupancy, highly linear detectors

Length scale calibration (LSC)

- Neither the nominal nor the BPM measured beam positions correspond to real values accurately.
- The tracker position is considered as reference
- * The relationship is linear $x_{true} = \alpha x_{nominal}$
- Two special scans used for LSC
 - Constant separation LS scan
 - Average LS for B1&B2
 - Variable separation LS scan
 - Separate LS for B1&B2

Beam-Beam effects

Non-factorisation BCID structure

Non-factorisation

- Imaging scan analysis
 - Fits the 2D bunch density function
 - Using a set of 4 special scans
 - For few BICDs with high rate VTX data

