

Jet performance and pileup mitigation in Run3 in CMS <u>Anna Benecke</u> (UCLouvain) on behalf of the CMS Collaboration

Outline

Event cleaning

Optimisation of the pileup mitigation technique for the τ_h identification \rightarrow unified flavor identification

Jet energy performance

Jet scale and resolution in $|\eta|$ <2.5 in promptly reconstructed data is [CMS-DP-2024-039] as good as legacy reconstruction in Run2 [CMS-DP-2024-064] First full calibration of regressed p_T for small-cone jets

New developments

New developments for variable-R jet clustering and charge identification

[CMS-DP-2024-038] [CMS-DP-2024-044]

[CMS-DP-2024-043]

[CMS-DP-2024-028]

Outline

Event cleaning

Optimisation of the pileup mitigation technique for the τ_h identification \rightarrow unified flavor identification

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-08 08:30:28.497920 GMT Run / Event / LS: 280327 / 55711771 / 67

Pileup mitigation in the context of τ_h identification

- Unified flavor identification for small-cone jets extended to hadronic $\boldsymbol{\tau}$
- **PUPPI** showed an inefficiency wrt to **CHS** at low p_T
 - \rightarrow optimized track-vertex association (PUPPI v18)

More about the unified flavor identification in the talk by Uttiya Sarkar

Anna Benecke

Pileup mitigation in the context of τ_h identification

Outline

Jet energy performance

[CMS-DP-2024-028]

Jet scale and resolution in $|\eta|$ <2.5 in promptly reconstructed data is [CMS-DP-2024-039] as good as legacy reconstruction in Run2 [CMS-DP-2024-064] First full calibration of regressed p_T for small-cone jets

Barrel Pixel layer 3 & 4

After TS1 of 2023 (June 19-24): 27 modules* in the Barrel Pixel Layers 3 & 4 became inoperable (issue in distributing the LHC clock signals). They cover a sector spanning approximately 0.4 radians (~23 degrees) in ϕ at negative pseudorapidity.

A small region in the detector has reduced efficiency in tracking

Barrel Pixel layer 3 & 4

After TS1 of 2023 (June 19-24): 27 modules* in the Barrel Pixel Layers 3 & 4 became inoperable (issue in distributing the LHC clock signals). They cover a sector spanning approximately 0.4 radians (~23 degrees) in ϕ at negative pseudorapidity.

A small region in the detector has reduced efficiency in tracking

Jet energy scale – time evolution -

- Excellent performance in the barrel region for Run3
- The difference between data and simulation stable after the alignment in 2022

[CMS-DP-2024-039]

Jet energy resolution - time evolution -

Outperforming legacy Run2 reconstruction in $|\eta| < 2.5$ with promptly reconstructed data!

[CMS-DP-2024-039]

p_T regression

[CMS-DP-2024-064]

First flavor-aware p_T regression for small cone jets:

- Significant resolution improvement of up to 17%!
- Complete calibration with data gives a non-closure of 2-5% in $|\eta| < 2.5$

Anna Benecke

11

Outline

New developments

New developments for variable-R jet clustering and charge identification

[CMS-DP-2024-038] [CMS-DP-2024-044]

Multiscale problems with Variable-R jet clustering

- Variable-R clustering especially useful for multiscale problems like 4 top final states
- Training a BDT improves the top tagging efficiency significantly over cut-based approach

Anna Benecke

Poster about Variable R clustering

Jet charge tagger

[CMS-DP-2024-044]

- Development of a charge jet tagger to differentiate W^+ , W^-
- Using ParticleNet architecture trained on W's from $t\bar{t}$ production
- Very good agreement between data and simulation

Anna Benecke

Summary

Optimisation of the pileup mitigation technique for the τ_h identification \rightarrow unified flavor identification

Jet scale and resolution in the barrel region in promptly reconstructed data is as good as legacy reconstruction in Run2

First full calibration of regressed p_T for small-cone jets

New developments for variable-R jet clustering and charge identification

Backup

Track-vertex association in PUPPI

CHS keeps LV (S) and unassociated (S) particles, PUPPI keeps LV (S) but assigns a weight o unassociated particles (S).

Anna Benecke

More information can be found in <u>DP-21-001</u>

Pileup mitigation in the context of τ_h identification

In general a very good time stability is observed!

Average pileup offset

2023 (13.6 TeV) 2023 (13.6 TeV) 2023 (13.6 TeV) 120r 10_{1} 10 (%) (%) (%) CMS CMS CMS $-0 \le \mu < 20$ **→** 0 ≤ μ < 20 $\rightarrow 0 \le \mu < 20$ 8 Simulation Simulation _ Simulation Average PU offset / $p_{_{\rm T}}$ Average PU offset / $p_{_{\rm T}}$ 8 <u>a</u>⊢100 Preliminary Preliminary Preliminary Average PU offset / **-** 20 ≤ μ < 40 $-20 \le \mu < 40$ **-** − 20 ≤ μ < 40 anti-k_T R=0.4 (CHS) anti-k_T R=0.4 (CHS) anti-k_T R=0.4 (PUPPI) 6 6 80 before PU corrections after PU corrections $--40 \le \mu < 60$ $--40 \le \mu < 60$ $--40 \le \mu < 60$ 0.0 < ml < 1.30.0 < ml < 1.30.0 < ml < 1.34 60 monitoring only 40 20 0 _4 _4 3000 1000. 3000 100 300 1000 100 300 1000. 3000 30 300 30 30 10 100 10 10 p_T^{ptcl} p_{τ}^{ptcl} p_ptcl (GeV) (GeV) (GeV) 2023 (13.6 TeV) 2023 (13.6 TeV) 2023 (13.6 TeV) 30 250 (%) (%) (%) 14**⊢ CMS** CMS CMS ⊢0 ≤ μ < 20 ⊢0 ≤ μ < 20 $-0 \le \mu < 20$ 25 - Simulation $/ p_T$ Simulation Simulation Average PU offset / p_T offset / $p_{_{T}}$ 12 200 Preliminarv Preliminarv Preliminary $-20 \le \mu < 40$ **--** 20 ≤ μ < 40 -**--** 20 ≤ μ < 40 offset / anti-k_T R=0.4 (CHS) anti-k_T R=0.4 (PUPPI) anti-k_T R=0.4 (CHS) 10 20 after PU corrections before PU corrections $--40 \le \mu < 60$ $--40 \le \mu < 60$ 2.7 < ml < 3.0- 2.7 < ηl < 3.0 2.7 < hpl < 3.08 150 15 РО Average PU monitoring only Average 100 10 50 **O**⊧ 1000 p_tcl 3000 1000 3000 3000 1000. 10 30 100 300 30 100 300 300 10 30 100 10 p_{τ}^{ptcl} (GeV) (GeV) (GeV)

Anna Benecke

[CMS-DP-2024-039]

Absolute *p*_T-dependent residual **Correction**

• Similar performance to legacy reconstruction of Run2 in $50 < p_T < 500$ GeV

HOTVR+BDT - mass sculpting

[CMS-DP-2024-038]

New developments for jets

23

New developments for jets

Jet charge tagger - input features

[CMS-DP-2024-044]

Variable	Description
ΔR	angular separation between the particle and the jet axis $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$
Δη	difference in the pseudorapidity between the particle and the jet axis
Δφ	difference in the azimuthal angle between the particle and the jet axis
log E	logarithm of the particle's energy
log p _T	logarithm of the particle's p_T
log E/log E ^{jet}	logarithm of the particle's energy relative to the jet energy
log p _T /log p _T ^{jet}	logarithm of the particle's p_T relative to the jet p_T
Jet constituents charge	electric charge of the particle

Jet charge tagger - jet charge

[CMS-DP-2024-044]

25

Jet charge tagger - output node

