The CMS Muon Endcap

Same and a set

(ME0) GEM Detector

ICHEP: International Conference on High Energy Physics (18-24 July,2024)

> Tanvi Sheokand Panjab University, India On behalf of the CMS Collaboration

Introduction

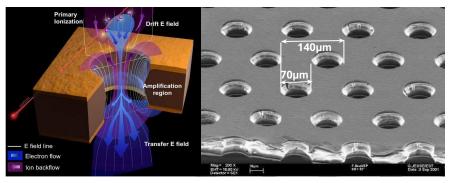
CMS (Compact Muon Solenoid)

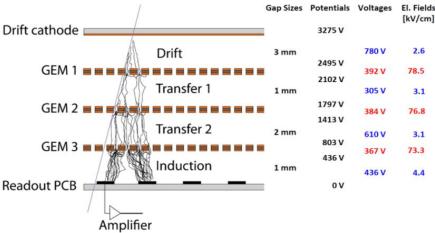
- General purpose experiment at the Large Hadron Collider (LHC) at CERN.
- Measures proton-proton and heavy-ion collisions.
- Successfully running at 13.6 TeV, with an LHC luminosity exceeding 10³⁴ cm⁻² s⁻¹.

High Luminosity LHC (HL-LHC)

- Integrated Luminosity: Tenfold increase compared to original design.
- Center of Mass Energy: Increase to 14 TeV.
- Proton-Proton Interactions: Up to 200 interactions per bunch crossing every 25 ns.
- Challenges: Longevity validation and completion of muon chambers

The GEM upgrade: three new stations GE1/1, GE2/1 and ME0 based on the triple-GEM technology

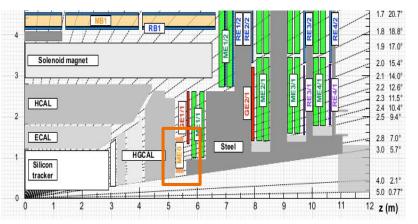

Introduction to GEM Technology

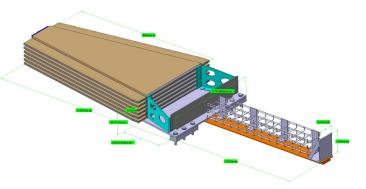

• GEM Basics

- Construction: Thin copper-clad Kapton foils with high-density holes (50 to 100 per mm²)
 - The hole exhibit a bi-conical structure
- Gas Mixture: Typically filled with Ar (70%) and CO2 (30%)
- > Performance:
 - High rate capability (~MHz/cm²)
 - Gain ~ 2 x 10⁴
 - Spatial resolution ~300µm
 - Time resolution ~8 ns

Generations of GEM Detectors

- GE1/1 and GE2/1: Complementing Cathode Strip Chambers (CSC) in the forward region
- ME0: Extending muon system acceptance to R higher pseudorapidity regions

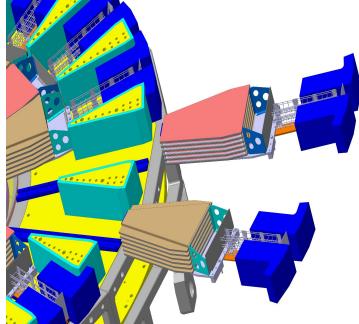



The MEO upgrade

The label "*ME0*" uses '*ME*' to indicate Muon Endcap system and '*0*' to indicate that this new muon station is located in front of the original muon endcap system.

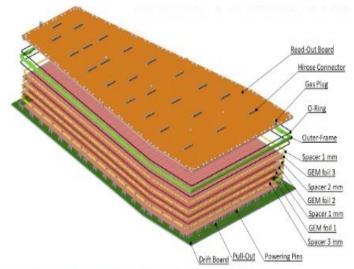
Motivation

- Current Detector Challenges: Aging Infrastructure, detector efficiency, resolution and accuracy in higher collision rates and high-radiation environments.
- Geometrical Acceptance: The new ME0 detector is designed to increase the geometrical acceptance for muons, crucial for multi-muon final states and forward particle production..
- Improved Muon Identification: The ME0 GEM detectors will improve the trigger system, enabling more efficient and accurate event selection and event reconstruction.



MEO Design and Construction

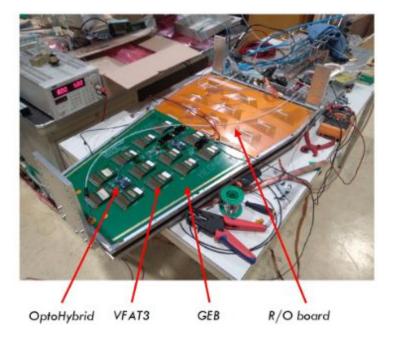
- Design
 - Structure: Trapezoidal stacks in a planar ring with an inner radius of ~0.6 m and an outer radius of ~1.5 m.
 - Number of Chambers: 216 triple-GEM modules (18 ME0 stacks per endcap)
 - Dimensions (active volume): Length: 78.8 cm (center line), Width: (23.6–51.4) cm, Hight: 1.8 cm
 - Radial distance from beam line: 63 cm
 - > **Coverage**: 2.0 < $|\eta|$ < 2.8. Each stack covers $\delta \phi = 20^{\circ}$
 - Installation: The ME0 station will be installed in the endcap nose directly behind the new high-granularity calorimeter (HGCAL).
 - > **Readout Partitions**: Module segmented into 8 readout partitions in η and 3 in ϕ (24 total readout sectors).
 - Layers: Six layers of triple-GEM chambers to form ME0 stack.



<u>3D drawing of the insertion of two adjacent stacks of six ME0 modules (pink/brown) into the endcap nose.</u>

ME0 Performance Expectations

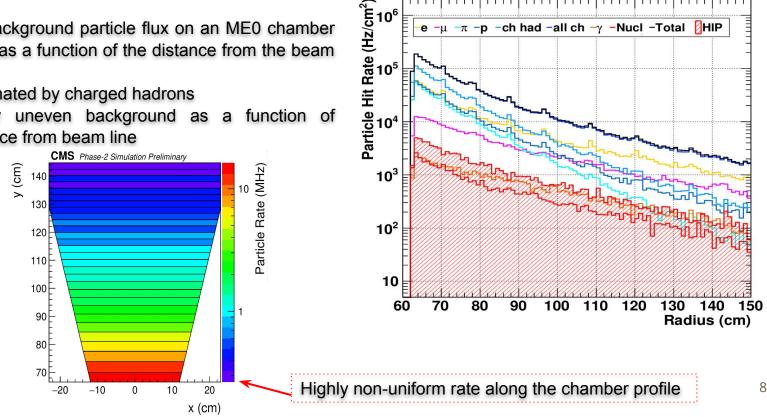
- Performance Metrics
 - Geometric Acceptance: Maximum possible acceptance.
 - Efficiency: Single-module efficiency of >97%, stack efficiency of 98.8%.
 - Rate Capability: At least 150 kHz/cm².
 - Spatial (Angular) Resolution: 390µm (≤500 µrad).
 - Timing Resolution: 8–10 ns.
 - ➤ Gain Uniformity: ≤15% across and between modules.
 - Longevity: No gain loss after 840 mC/cm² of integrated charge. Survive harsh radiation environment: 7.9C/cm²
 - Discharge Rate: Minimal impact on performance or operation.


MEO Electronic

• Front-end Components

- > VFAT3 Chips: Digital readout for 128 strips.
- GEM Electronic Board (GEB): 1mm PCB providing electric links and shielding.
- bPOL DC-DC Converters: Adjust input LV power for on-detector electronics.
- OptoHybrid (OH): Front-end concentrator reading out 6 VFATs.

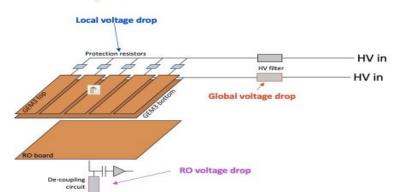
Status

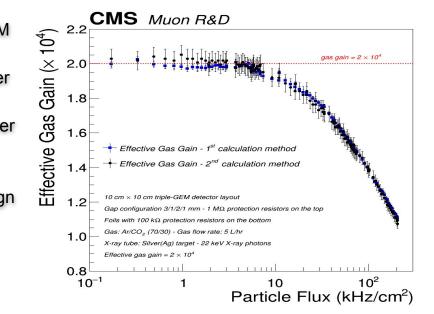

All components are in production and have been extensively tested in labs and test beams.

MEO Background and Challenges

- Expected Rates: Up to 150 kHz/cm² in the highest-n region
- Expected background particle flux on an ME0 chamber for HL-LHC as a function of the distance from the beam line.
 - Dominated by charged hadrons \succ
 - Highly uneven background as a function of distance from beam line

CMS Phase-2 Simulation Preliminary

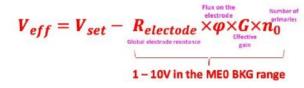

π


-p -ch had -all ch $-\gamma$ -Nucl -Total HIP

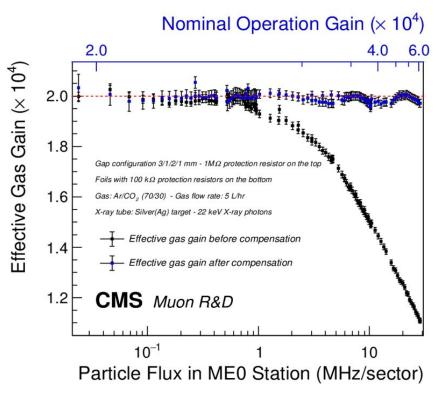
https://ieeexplore.ieee.org/document/9875626

GEM Rate Capability

- Rate Capability
 - Measurement: Performed on a triple-GEM detector irradiated by x-ray generators.
 - Voltage Drop: on the protection and filter resistors
 - depends on the integrate particle flux per GEM foil sector
 - rate capability of $\mathcal{O}(10^4 \text{ Hz/cm}^2)$
 - It can be tuned by changing the HV design parameters


Blue dots show the gain measured under irradiation Black dots shows the gain when only resistive voltage drops are expected

Voltage Compensation Method


Voltage Drop Dependance: It depends on the particle flux, number of primary electron-ion ionisation pairs and protection resistance:

Compensation Procedure:

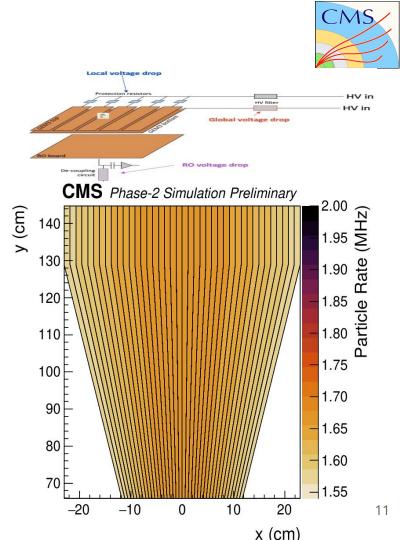
- *Iterative Determination*: Determine the effective operating voltage iteratively to maintain nominal gain.
- **Application**: Successfully applied to triple-GEM prototypes under x-ray irradiation.

Application in ME0 Challenges: ME0 experiences a large voltage drop in the highest η sector due to expected high rates (up to 10 MHz)

MEO GEM Foil Segmentation

Non-uniform background as a function of $\boldsymbol{\eta}$

Issue:

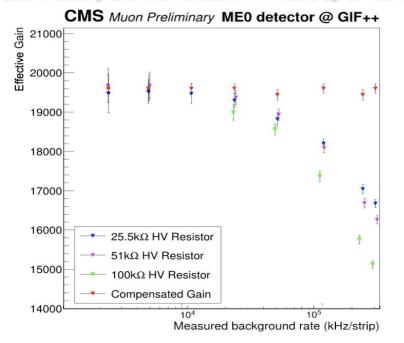

- Standard segmentation leads to highly uneven voltage drop
- Not possible to apply compensation method

Solution: Radial GEM foil segmentation w.r. to beam line

- Achieve equal background particle rate per sector
- Uniform gain drop per HV sector (at 140PU we expect 1.6 MHz/sector)

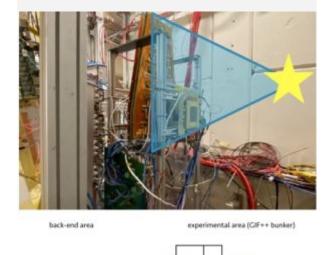
ME0 segmentation design:

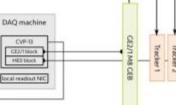
- Details: Divided into 40 sectors. Each sector is smaller than 100 cm² to minimize discharge energy.
- Drawback: dead area at sector separation



MEO Rate Capability Studies at the GIF++

Compensation demonstrated with different HV filters

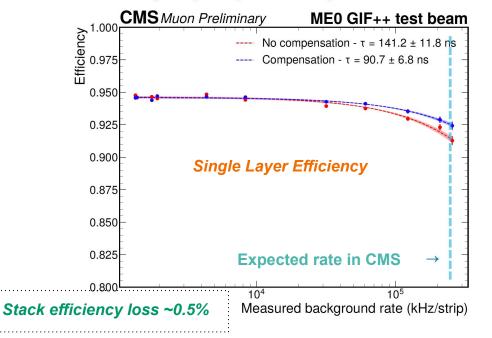

 Gain recovery demonstrated up to 2.2 MHz/sector or 280 kHz/strip and with different HV filters up to 100 kΩ

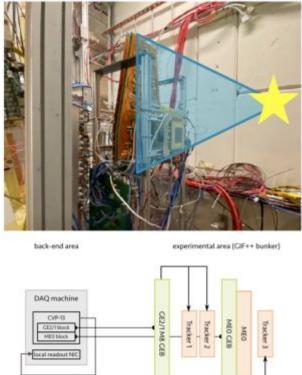


Setup: ME0 layer + reference GEM tracker • Placed inside the source cone for uniform and intense irradiation

Full RO chain (VFAT3 frontend)

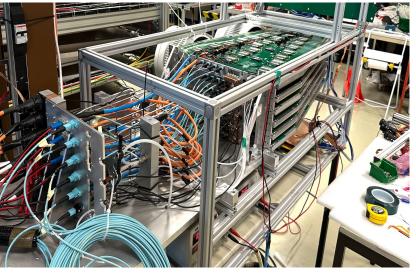
Source:137 Cs (14TBq) γ (662 keV)


12

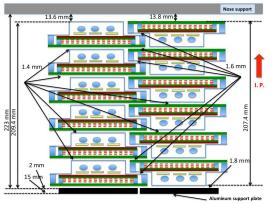

ME0 Efficiency at the GIF++

Validation of detector + RO electronics

- Single Layer Efficiency loss not recovered by voltage compensation.
- Cause of efficiency loss: dead time of VFAT3 > 300 ns.
- Limited impact (2.5%) at CMS expected rate.


Background:SPS beam of 80 GeV muons + 137 Cs (14TBq) γ (662 keV)

Conclusions and Current Status


- Achievements:
 - Rate Capability Studies: Successfully accessed and analyzed rate capability studies.
 - Mitigation Strategies: Implemented strategies including radial HV segmentation and voltage drop compensation.
 - Impact Quantification: Quantified the impact of HV filters on performance.
 - Design Validation: Validated and finalized the design.
- Production and Assembly
 - R&D phase: Completed the research and development phase.
 - Production: Mass production started
 - Assembly: 16 Modules for ME0 already assembled and undergoing Quality Control tests.
 - Installation: Planned in 2026 and 2027.

Backup: HL-LHC and ME0 Longevity

- Projected Integrated Luminosity
 - Increase from 300 fb⁻¹ to 3000 fb⁻¹ over two decades.
- ME0 Longevity
 - Must integrate 840 mC/cm² over its lifetime without gain loss.

LHC / HL-LHC Plan

Backup: MEO Specifications and Layer Structure

Englishing / Deveryonator	ME0		Layer		Material		Thickness [mm]	
Specification / Parameter	Gaseous detector; micro-pattern gas detector (MPGD)		Protective c		Al Cu (filled with H ₂ O)		.0	
Detector technology			Cooling pip	e Cu (filled			8 external \oslash , 6 inner \oslash	
Charge amplification element	GEM foil (triple, cascaded, tensioned at $\approx 6 \text{ cN/cm}$)		Cooling page		Cu		1.0	
Number of modules in overall system	216 (108 in each endcap)		GEB board		/FR4		/0.856	
Chamber shape (active readout area)	Trapezoidal; opening angle 20°		Readout bo		FR4/Cu		.2/0.035	
Chamber dimensions (active vol.)	L: 78.8 cm (center line), W: (23.6–51.4) cm, H: 1.8 cm H: 3.34 cm 0.296 m ² 2.1 liters 63 cm (at inner edge of active readout area)		Induction g GEM 3		Ar/CO ₂ Cu/polyimide/Cu Ar/CO ₂		1.0 0.005/0.050/0.005 2.0	
Total module thickness								
Active readout area			01		vimide/Cu	0.005/0.050/0.005 1.0		
Active module volume				Transfer gap 1 Ar				
Radial distance from beam line			GEM 1		Cu/polyimide/Cu Ar/CO ₂		0.005/0.050/0.005 3.0	
Geometric acceptance in $ \eta $	2.03-2.8	Drift gap						
Signal readout structure	Truly radial readout strips		Drift board	Cu/I	FR4/Cu	0.035/3	.2/0.035	
Readout strip dimensions	0.94 mrad angular pitch		a 131		0714	0770 14		
Number of η -segments in readout	8	Muon subsystem RE Detector technology $ \eta $ range Number of chambers		RE3/1 + RE4/1	GE1/1	GE2/1	ME0	
Number of readout strips per η -segment	384			iRPC	GEM	GEM	GEM	
Number of readout strips per module	3072			1.8-2.4	1.6-2.15	1.6-2.4	2.0-2.8	
Counting gas mixtures	Ar/CO ₂ 70:30							
Nominal operational gas flow	1 module volume per hour			36 + 36	144	72	216	
Number of gas inlets	1	Number of channels		13 824	442368	442 368	663 552	
Number of gas outlets	1	Number of layers/station		1	2	2	6	
Nominal HV applied to drift electrode	3200 V (Ar/CO ₂)	이 있는 것은 것은 것을 알려요. 이 가지 않는 것은 것을 알려요. 가지 않는 것을 알려요. 이 가지 않는 것은 것을 알려요. 이 가지 않는 것은 것을 알려요. 이 가지 않는 것은 것을 알려요. 이 가지 않는 것을 이 가지 않는 것을 알려요. 이 가지 않 이 가지 않는 것을 알려요. 이 가지 않는 것을 알려요. 이 가지 않는 것을 알려요. 이 가지 않는 것을 같이 않는 것을 알려요. 이 가지 않는 것 않는		93 m ²	$54 {\rm m}^2$	$105 \mathrm{m}^2$	$64 \mathrm{m}^2$	
Nominal operational gas gain	$1-2 \times 10^{4}$	Surface area of all layers						
Demonstrated rate capability	100 MHz/cm ²	spatial resolution		$\sim 0.3~{ m cm}$	200–340 μm	200–410 μm	160–390 μm	
t . f .		time	resolution	1.5 ns	8ns	8ns	8 ns	

(For the first time, such large (>1 m long) Triple-GEM detectors are used in such a harsh environment)

