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● Hadronic Calorimeter used for particle energy 
reconstruction in the ATLAS experiment at LHC, CERN

● Passive layer made out of steel, active layer consists 
of scintillator 'tiles' (Fig. 1)

● Calorimeter segmented into two Long Barrel (LB) and 
two Extended Barrel (EB) partitions. Each partition 
divided into 64 modules along the azimuthal angle

● Scintillated light collected using wavelength-shifting 
optical fibers, converted into electric signal via 
photomultiplier tubes (PMTs). Tiles are grouped into 
cells, arranged into 3 radial layers (A, BC/B, D) and 
projectively in pseudorapidity (Fig. 2). Regular cells are 
read out by 2 PMTs (channels)

● Electric signal split into high and low gain, shaped in 
front-end electronics, digitized using a 10-bit ADC. 
Small signals amplified for better signal-to-noise ratio

● Signal amplitude, phase reconstructed in back-end via 
the Optimal Filtering (OF) algorithm

Time Calibration and Monitoring Time Resolution

Timing Jump CorrectionsTile Calorimeter
● Timing jumps: sudden discontinuities in cell timing caused by clock command failure at level 

of front-end electronics, specifically correlated across a group of six channels

● 2D histograms created for each channel using laser data (Fig. 4); reconstructed time of 
laser injection signal plotted vs luminosity block (lumiblock – time interval of data recording) 

● Automatic software tool uses a floating average to scan for anomalies in mean reconstructed 
time on a per-channel basis

● Timing Jump detection threshold recently lowered from 3 ns down to 1 ns thanks to upgrade 
of the software tool

- Floating average method kept, method for timing data storage rebuilt from scratch – now 
handled via custom dedicated class 

- Full backward compatibility with older data, minimal increase in memory and storage space 
reqs., multiple additional checks introduced

- Applied during 2022 and 2023 reprocessing, over 70% of all detected jumps below original 
3 ns detection threshold in both years

● Gaussian fit applied to the distribution of 
reconstructed times in a specific cell energy 
range – time resolution denotes the width of the 
fitted gaussian

● Dependence of detector time resolution on 
energy routinely monitored and investigated

- Detector time resolution fitted by the formula 
listed in Fig. 5 in both gains separately

- Formula divided into three terms summed in 
quadrature, based on correspondence to the 
OF algorithm weights

● Detector time resolution can now be examined 
in each individual radial layer (previously only 
analysis at the level of individual partitions 
available)

● Qualitative explanation of observed effects 
based on detector geometry and impacts of 
pile-up for specific cell types available:

- Relative differences between Long and 
Extended Barrels for each individual radial 
layer caused by differences in absolute 
pseudorapidity of cell centers – resolution 
worsens with increased pseudorapidity

- Outermost D-layer time resolution offset at 
higher energies caused by greater cell size in 
the pseudorapidity frame – resolution worsens 
with cell size (see Fig. 2)

- Innermost A-layer low energy behaviour 
driven by pile-up sensitivity – time resolution 
degrades with increased pile-up

● Precise TileCal energy reconstruction requires time calibration for optimal performance (OF 
algorithm is phase-dependent, correct particle time-of-flight necessary)

● Individual channels must be calibrated to yield zero-phase signal in response to ultra-
relativistic particles travelling from the detector interaction point

● Time calibration and monitoring achieved using pp jet data, muon splashes

● Time monitoring also utilizes data from laser calibration system; illumination of all PMTs by 
controlled light source, either in-gap during empty bunch crossings of a pp run or during 
dedicated standalone runs

● Zero phase fixed via introduction of channel-specific time constants reflecting e.g. length of 
optical fibers, time-of-flight into the specific cell, ...

● Corrections to channel timing performed during calibration loop for each run as well as 
during yearly reprocessing (Fig. 3)

● Software tools allow bulk analysis and monitoring of channel timing during the run
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Fig. 2: Arrangement of cells in the Long and Extended Barrel [2] Fig. 4: Example timing jump, before and after corrections [1]
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Fig. 1: TileCal Module [1]

Fig. 3: Mean channel times in physics, before and after corrections [3]

Fig. 5: Combined Time Resolution [3]

Fig. 6: Time Resolution in layers [3]
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