Interactive 3D event display showing a bunch crossing containing a muon-triggered collision and two distinct dijet pileup collisions. Displays the same bunch crossing as the 2D display below in the section "Visualising a Bunch Crossing".

Turning Noise Into Data: Using Pileup for Extraction of the Jet Energy Resolution

ICHEP, Prague 18-24 July 2024

Antti Pirttikoski on behalf of the ATLAS collaboration

The ATLAS detector observes **multiple proton-proton** (*pp*) **collisions simultaneously** in each bunch crossing. The typical physics analysis only considers a single *pp* collision selected by the trigger system, while the rest of the collisions are referred to as **pileup**. They add noise to the physics process under study. However, by independently reconstructing these pileup collisions, it is possible to access **an enormous dataset of lower-energy hadronic physics processes**. In this approach, the triggering collision is vetoed, leaving the remaining pileup dataset **trigger unbiased**. The potential benefits of using pileup for physics are shown through the evaluation of the **Jet Energy Resolution** (**JER**), comparing single-jet-trigger-based and pileup-based datasets.

Using Pileup Collisions for Physics

Trigger-based approach: Analyse triggered collision **Discard pileup collisions**

Visualising a Bunch Crossing

Benefits of Pileup Dataset

- A novel way of using already recorded data without additional cost or requirements on the trigger system, readout or storage
- Low energy single-jet triggers record only fraction of all the events (prescaling)
 → No such limitation with pileup data

Example of a bunch crossing containing a muon-triggered collision (PV0) and two distinct dijet pileup collisions (PV1 and PV2)

Pileup Dataset Selection

- Use only well-understood jets within the tracker acceptance region
- Remove out-of-time jets from other bunch crossings
- •Remove the triggering vertex (currently only considering **electron and muon triggers**)
- Veto pileup collisions that are closer than 2 mm to triggering vertex to ensure being unbiased by trigger
- •Select only events where the jets clearly originate from the same collision, removing events where

- \rightarrow Mostly depend on ATLAS trigger rate
- More data with pileup approach compared to single-jet triggers when leading jet p_T < 65 GeV

0.3

ATLAS

d L •The JER measures the precision with which the energy of the hadronic showers can be known

 Important quantity in many Standard Model measurements and searches for new physics

• Derived by measuring p_T imbalance of pair of jets (**asymmetry**) and width of this distribution in multiple p_T bins

Pile-up-based dijet JER,

Results and Outlook

• Excellent agreement with the official ATLAS JER single-jet triggered measurement

 Provides strong evidence that pileup dataset is **unbiased** as results are compatible with the normal approach

•The pileup JER measurement has much **higher sensitivity** than triggered dijet JER measurements at low $p_{\rm T}$, and will help in the in situ combination

¹⁰⁰⁰ •The pileup dataset offers many interesting potential applications for eV] low-energy hadronic physics analyses

> **ATLAS** EXPERIMENT

ATLAS-JETM-2023-08-001