Triggering on Muon Showers

42nd International Conference on High Energy Physics July 2024 Javier Prado Pico, Carlos Vico Villalba, Santiago Folgueras On behalf of the CMS collaboration

0.75

0.7

0.65

0.6└ 200

Introduction:

ICTEA

HL-LHC will open up an unprecedented opportunity for HEP: high-precision SM measurements and extending BSM searches.

 \blacktriangleright The detector readout electronics and DAQ will be upgraded to allow an increased L1 trigger rate (750 kHz) and latency of 12.5 μ s.

Goal: select events that are likely to contain interesting muon-related information to extend physics program.

Background:

The Analytical Method (AM) produces compatible straight line muon trigger primitives from the adjacent drift tube cells. Implemented in dedicated FPGA boards for simultaneous readout of the Drift tubes(DT) + Resistive plate chamber (RPC) system. Matching segments within a 25ns window is 99% efficient. In case of a muon shower, multiple cells will be active in a small area, producing a combinatorial explosion of many possible trigger primitives, producing spurious data and taking too long to process.

Physics motivations: Particle shower identification for high momentum muon tagging and hadronic shower reconstruction. Extended sensitivity for long-

•	Direct determination (simulation)
Å	Direct determination (data)
	Showers (simulation)
	Showers (data)

1400

p (GeV)

1600

lived particles. Improved efficiency of the Analytical Method.

•		•				•	•		•		•		0		•		0	0		•		•			•	
•		•		•		•		•		0		e	C		0		•)	c		C			0	Т	
•		•		•		•				•		0	0		•		0		•		•		•	Τ	0	
•		•		•		•		•		0		C	9		0		0		c	,	c)		•		

- Each hit must be stored for 400ns, 16 bunch crossings
- We can represent the amount of hits in each group of detection layers, super layer (SL), as a function of time.

- Preliminary FPGA resource consumption using