

# Test beam performance of sensor modules for the CMS Barrel Timing Layer CMS/

Flavia Cetorelli on behalf of the CMS Collaboration Università degli Studi di Milano-Bicocca Sezione INFN Milano-Bicocca



## The Barrel Timing Layer for Phase II upgrade of CMS detector

The Mip Timing Detector (MTD) [1] is included in the Phase II Upgrade of the Compact Muon Solenoid (CMS) detector:

- Upgrade of the CMS detector needed to cope with harsh **High Luminosity (HL) LHC** conditions, such as:
  - **higher** amount of **interactions per bunch crossing** (~200) 0
  - higher radiation damage (integrated particle fluences of ~  $2 \times 10^{14}$  1 MeV n<sub>eq</sub>/cm<sup>2</sup>)
- MTD inserted between the tracker and the electromagnetic calorimeter:
  - Barrel Timing Layer : LYSO:Ce crystal bars readout at both ends by Silicon Photon Multipliers (SiPMs)
  - Endcap Timing Layer: LGADs
  - Time resolution: **30-60 ps** at the beginning of its operation (BoO) end of operation (EoO) due to radiation damage
  - Perform **4D reconstruction** of vertices to maintain the actual CMS reconstruction performance

## **Barrel Timing Layer**





## Test beam campaigns

• Several **test beam campaigns** performed at CERN's test beam facility in the Prevessin Site with 180 GeV pions and at Fermilab Test Beam Facility with 120 GeV protons to evaluate optimal design





**Time resolution main drivers** 

$$\sigma_t^{BTL} = \sigma_t^{ele} \oplus \sigma_t^{phot} \oplus \sigma_t^{DCR} \oplus \sigma_t^{clock} \oplus \sigma_t^{dig}$$

#### **Electronics noise**

Scaling with the steepness of the rising edge of signal pulses at the timing threshold

## $1/(dI/dt) \propto 1/N_{pe}$

Addition of **mini thermoelectric coolers** (TECs) for DCR reduction [2]: • operation of SiPMs at -45 °C (about a

### **Photo-statistics** due to fluctuations

in the time of arrival of photons detected by SiPMs 1/√N<sub>pe</sub>

#### **Dark Count Rate**

Induced by radiation damage Expected integrated fluence up to  $2 \times 10^{14}$  1 MeV n<sub>eq</sub>/cm<sup>2</sup>  $\sigma_{+}^{DCR} \propto \sqrt{DCR/N_{pe}}$ 



 $(3.75 \times 3.12 \times 55 \text{ mm}^3)$ Hamamatsu Photonics (HPK) SiPMs

> dedicated readout chip TOFHIR2C [3]

## **Optimization of the sensors**

## SiPMs cell-size:

- SiPMs with larger cell-size feature **higher PDE and Gain**, which mean higher number of photoelectrons (N<sub>ne</sub>) and **signal slope**  $\rightarrow$  reduction of the photo-statistic and the electronics noise terms.
- However, these SiPMs have **larger DCR** (due to larger effective active area of SiPMs). But since  $\sigma_{t}^{DCR} \propto \sqrt{DCR/N_{pe}}$  $\rightarrow$  net improvement in **signal-to-noise ratio**.



- factor 2 reduction in DCR every 10 °C)
- annealing up to **60** °C during shutdown/technical stops
- **Photo-statistics** is dominant at **BoO** typical working point of 3.5 V
- Electronics noise has a large impact at low over-voltages (V<sub>ov</sub>)
- DCR noise becomes the main contribution at large V<sub>ov</sub> in the time resolution for EoO SiPMs

budget constraints.

#### **Crystal thickness:** 2.

• Increasing the thickness (t) results in a higher energy deposited in the crystal by MIPs  $\rightarrow N_{pe} \propto 1$ 



• However, the need of SiPM with a larger active area to keep unaltered light collection efficiency increases **DCR** as well. Expected gain in  $\sigma_{\uparrow}^{DCR} \propto 1/\sqrt{1}$ 

Type 1 crystals **perform better** in both BoO and after irradiation scenarios.



## Validation of BTL performance

**BTL timing resolution performance** has been validated through a set of several test beam campaigns during 2023.

- $\star$  These campaigns led to the final choice of the sensor modules:
  - 25 um cell-size HPK SiPM with 3.75 mm thick crystals (type 1)
- $\star$  The chosen detector configuration achieves design requirements of **25-30 ps** at the BoO and **60 ps** after 3000 fb<sup>-1</sup>.

flavia.cetorelli@cern.ch



Prototyping phase for BTL is closed, now into final preparation steps towards **detector assembly and integration** 



References

[1] CMS Collaboration, A MIP Timing Detector for the *CMS Phase-2 Upgrade*, CERN-LHCC-2019-003; CMS-TDR-020

[2] A. Bornheim *et al., Integration of thermo-electric* coolers into the CMS MTD SiPMs arrays for operation under high neutron fluence, JINST 18 (08) (2023) P08020. doi:10.1088/1748-0221/18/08/P08020.483 [3] E. Albuquerque et al., TOFHIR2: the readout ASIC of the CMS barrel MIP Timing Detector, JINST 19 (05) (2024) P05048. doi:10.1088/1748-0221/19/05/P05048 [4] CMS Collaboration, *Barrel Timing Layer* Performance Plots, CERN-CMS-DP-2023-093 [5] CMS Collaboration, *Barrel Timing Layer Performance Plots*, CERN-CMS-DP-2024/049

