
algorithm software codealgorithm software code
algorithm software code
 return output

PIPELINE

ELEMENTS

PARALLEL

TASKS

MEMORY

ACCESSES

HLS code

refactoring

HLS

Synthesis

HLS

engine

Test

Optimized

circuit

Single module RTL Implementation

Algorithm

implementation

HARDWARESOFTWARE

1

2

3

Functional
iterations

Arch
iterations

From Software to Hardware: An easy guide to

accelerate algorithms for the HL-LHC upgrades of

CMS Level-1 Trigger System

The 42nd International Conference on High Energy Physics

(ICHEP2024) – Prague, July 2024

Pelayo Leguina López – University of Oviedo, on behalf of the CMS Collaboration

Writing our algorithms in High Level Synthesis (HLS) language
enables a faster developing iteration time for FPGA design.
• Users can apply directives to the C code to create the Register

Transfer Level (RTL) specific to a desired implementation.
• C simulation can be used to validate the design and allows faster

iterations than a traditional RTL-based simulation.
• Increased level of abstraction accelerates development.
• Verification time is reduced.
• New possibilities for triggering on new physics signatures.

MOTIVATION

• Data come from different subdetectors streamed.
• Libraries such as hls_stream allow us to adapt

each module ports to streamed input type.
• This must be pipelined: The modules must be

continuously reading and processing the data at
the same time.

• Output ports described as internal signals.

• Load patterns as ROMs to calculate the
accumulated likelihood.

• Process each pattern in parallel, ensuring
proper loop unrolling, pipelining, and
array reshaping to avoid data
dependencies (RAW, WAW, WAR).

• Pipeline the module with an initiation
interval (II) of 1 to accept new data each
cycle.

• Load NN weights as ROMs.
• The NN is previously

trained.
• Several DSP modules are

required to calculate the
transverse momentum (PT)
calibration.

• The PT estimation is
calculated with the result
of each pattern’s likelihood.

BLOCK DIAGRAM

We will use the case study of a track-finding algorithm for muon
reconstruction with the CMS experiment to show some of the
optimizations with HLS [1].

1
Design our algorithm and implement it in C++
in a modular approach:

Detect muons in
the overlap region
of CMS detector

Algorithm receives
primitives from
muon subdetectors

• Algorithm infers the muon’s
transverse momentum
based on the primitive's
positions on each detector
layer, using a naïve Bayes
classifier and a NN

2 Refactor our code into synthesizable hardware:

Dynamic -> Static
• To be able to synthesize a

hardware implementation the
design must be fully self-
contained, specifying all
required resources.

• Using standard C/C++ data
types based on 8-bit boundaries
can lead to inefficient hardware
implementations, whereas
arbitrary precision (AP) data
types allow for smaller bit-
widths, resulting in more
efficient hardware operations,
faster execution, and better
utilization of FPGA resources.

Data types

MAIN PARADIGMS

Producer-Consumer
• Master thread initializes, forks

child threads for parallel
tasks, main thread collates
results.

• Convert sequential program,
extract parallel functionality
to improve performance.

Streaming Data
• Streams represent unbounded,

continuously updating data
sets.

• FIFO/PIPO buffers facilitate data
flow between producer and
consumer processes, improving
throughput and preventing
bottlenecks.

Pipelining
• Parallel tasks at instruction level

(ILP), like a car factory
production line.

• ILP boosts pipeline efficiency by
ensuring high data
production/consumption rates.

• Arrays mapped to hardware can be registers or various types of
memory (RAM, ROM), with different synthesis outcomes based
on array size and optimization settings, like Array Partition and
Array Reshape.

• Top-level arrays access external memory via RTL ports, while
internal arrays are synthesized as registers or block RAM
depending on their size.

• Pipelining loops enables overlapping
iterations, improving execution efficiency by
starting new iterations before the previous
one's finish.

• The Initiation Interval (II) defines the cycle
delay between iterations; II = 1 is ideal,
starting each iteration in the next cycle.

MAIN STRUCTURES

LOOPS

ARRAYS

A B C A B C

A B C

A B CII = 1

Latency = 4

Latency = 6

II = 3

for(i=1;i<3;i++){
do A;
do B;
do C;
}

Example loop

0 1 … N-2 N-1

N/2 N-2 N-1…

0 1 … N/2-1

1 N-3 N-1…

0 2 … N-2

0

1

…

N-2

N-1

Initial array shape

Block

Cyclic

Full

Pipelined

Not pipelined

FIRST STEPS

After designing our kernels
and synthetizing, the tool

can help us to trace
resource limitations or

timing closure problems.

For an improved synthesis
report, export RTL with
param -flow impl active
and in verilog.

If the module has
timing problems…
• Simplify the logic
• Reduce logic levels
• Reduce data path

● Vitis HLS library.
● HLS global params.

○ FPGA part
○ Clk period
○ CSIM/COSIM

● Export path
● Flow

COMMON SYNTH PARAMS.
Module Sources

Apply params

Make target

CoSIM + Flow

Export
IP+Token

To IP catalog

Timing check
Unzip

Build TCL
script

ALGORITHM

P
S

<-
>

FA
B

R
IC

P
S

<-
>

FA
B

R
IC

Ibuff Obuff

HLS modules are
interconnected in the

block design and
then to the board’s

framework.

Once the blocks are synthetized,
we can build the block design.

Adjust the floorplan

TCL
scripting
can be

used as a
fast way of
generating
the whole

project

Set of inputs filled
through a script

PS sends/receives
data to/from fabric Output is matched

with golden data

3Check the reports for
detailed info !!

IMPLEMENTATION

We can
parallelize

module
synthesis

Cmake custom pipeline
Allows the designer to automatize the

implementation process

Second, each
module’s target is

tested and the
results logged.

Third, every module is
synthetized and co-
simulated to check

HW results match SW.

Finally, the modules
are combined and

loaded into the
firmware

First, run the
emulation SW
and obtain the

test events.

INTEGRATION

The next step is to migrate to an online version control tool and utilize a Continuous Integration service

ALGORITHM IDEA

[1] The Phase-2 Upgrade of the CMS Level-1 Trigger, Tech. Rep. CMS-TDR-021, CERN, Geneva (2020) https://cds.cern.ch/record/2714892

Module 1
.cpp

• Gather ideas

• Design your software modules

• Test to achieve expected functionality

• Check algorithm efficiency

Efficiency of the Phase-II OMTF
algorithm for a sample with an
average of 200 pile-up events
as a function of muon PT [1].

https://cds.cern.ch/record/2714892

	Diapositiva 1

