The W-Si High Precision Preshower Detector of the FASER Experiment at the LHC

Prague CZ - 20/07/2024

Andrea Pizarro Medina, on behalf of the FASER collaboration

Introduction & Outline

Today's talk:

- FASER experiment overview
- Upgrade of preshower
- Monolithic silicon pixel ASIC

Other talks on the FASER experiment :

- Jack MacDonald: <u>New Physics Results from</u> <u>the FASER Experiment</u> (20/07, 16:45)
- Sergey Dmitrievsky: <u>Results from TeV</u> <u>Neutrinos at the FASER Experiment (18/07)</u>
- Alan Barr: <u>The Forward Physics Facility and</u> <u>its experiments (19/07)</u>

Introduction & Outline

Today's talk:

- FASER experiment overview
- Upgrade of preshower
- Monolithic silicon pixel ASIC

Other talks on the FASER experiment :

- Jack MacDonald: <u>New Physics Results from</u> the FASER Experiment (20/07, 16:45)
- Sergey Dmitrievsky: <u>Results from TeV</u> Neutrinos at the FASER Experiment (18/07)
- Alan Barr: <u>The Forward Physics Facility and</u> its experiments (19/07)

The FASER experiment

 \simeq 7 m length, 20 cm aperture (magnets)

Andrea Pizarro | Université de Genève

The FASER experiment

 \simeq 7 m length, 20 cm aperture (magnets)

Andrea Pizarro | Université de Genève

2 tungsten layers ($2X_0$) + 2 graphite layers + 2 scintillators

Current Detection Capabilities: Two Fermions

Andrea Pizarro | Université de Genève

No X-Y granularity: unable to resolve di-photon events !

X

Desired Detection Capabilities: Two Fermions / Photons

Andrea Pizarro | Université de Genève

Fine X-Y granularity, high dynamic range

New Preshower detector

New Preshower detector

6 planes in total (silicon + W plate)

Andrea Pizarro | Université de Genève

6 ASICs per module, 208x128 pixels each → 100 µm pitch hexagonal pixels

Motivation for upgrade

- FASER can probe Axion-Like-Particles (ALPs) models.
 - G → May be produced at LHC thanks to $(SU2)_L$ coupling with W.
 - → In this model ALPs decay exclusively into a photon pair.

More details on this **benchmark model**

g_{aww} [1/GeV] 10^{-3} Coupling 10^{-4} ALP 10^{-5}

 10^{-6}

Andrea Pizarro | Université de Genève

More details on the current <u>search for ALPs in FASER</u>

Motivation for upgrade

- → May be produced at LHC thanks to $(SU2)_L$ coupling with W.
- → In this model ALPs decay exclusively into a photon pair.

More details on this <u>benchmark model</u>

Andrea Pizarro | Université de Genève

Discovery Potential

More details on the current search for ALPs in FASER

Andrea Pizarro | Université de Genève

Andrea Pizarro | Université de Genève

Andrea Pizarro | Université de Genève

Andrea Pizarro | Université de Genève

Very large occupancy

Andrea Pizarro | Université de Genève

ASIC characteristics

Monolithic active pixel sensor 130 nm SiGe BiCMOS technology (SG13G2 by IHP microelectronics).

High dynamic range for charge measurement (0.5 to 65 fC). Ultra fast readout with no digital memory on chip (minimise dead area). Local analog memories to store the charge in pixel.

Andrea Pizarro | Université de Genève

t 150 μm	Main specifications	
	Pixel size	65 µm side (hexagon
	Pixel dynamic range	0.5 to 65 fC
	Cluster size	O(1000) pixels
	Readout time	< 200 µs
	Power consumption	< 150 mW/cm ²
	Time resolution	< 300 ps

In between imaging chip and HEP detector

Chip organized in 13 *super-columns*, each with:

- active region, subdivided into 8 *super-pixels* of 16x16 pixel each
- \Box digital column (40 µm) in the middle: masking and readout

Digital periphery on the bottom, and multiple guard-ring structure

2.2 cm

Andrea Pizarro | Université de Genève

Super pixel :

- General Gener
- → analog multiplexer
- → 4-bit flash ADC
- → 3 fast-OR lines
- → programming logic to mask
 pixels

Dead area < 5%

- Charge is stored into pixel's analog memory

- Charge is stored into pixel's analog memory

Production ASICs: single chip characterization at probe station

Un-diced wafer

Andrea Pizarro | Université de Genève

Probe card setup

Diced and postprocessed chips

Production ASIC: further studies on single chip boards

Full ASIC irradiated with β electrons from Sr-90 source MIP-like particle, charge deposition of ~0.5 fC

Sr⁹⁰ Hit map

Sensor and readout Not

Andrea Pizarro | Université de Genève

Sr⁹⁰ Charge

- Sensor and readout operating well on the full area
 - Not calibrated yet

Production ASIC: further studies on single chip boards

Full ASIC irradiated with γ from Cd-109 source charge deposition of ~1fC

Cd¹⁰⁹ Hit map

Sensor and readout operating well on the full area Not calibrated yet

Andrea Pizarro | Université de Genève

Cd¹⁰⁹ Charge

Chip is working well! Now, let's build modules...

Step n°1: aligning the 6 ASICs

Step n°2: glueing ASICs to back plate

Step n°2: glueing ASICs to back plate

Step n°3: glueing module flex on top of ASICs

Step n°4: build more and make a full plane

3 functional modules built and under testing If all ok, will deploy production

Summary & Outlook

- FASER is a small experiment but with good potential of discovery for new physics.
- The new preshower is critical to allow multi-γ tagging and enhance ALPs searches.
- The ASIC, in its third generation, has been produced and meets expectations so far.
 - Extensive test on-going to assess performance and select chips for module assembly.
 - → Planes will be put in a test beam at CERN in mid-October 2024 to validate DAQ
 - design and measurement of tracking performance.
- Targeted installation: **December 2024**

Lots of work ongoing: exciting times ahead of us!

Andrea Pizarro | Université de Genève

FASER collaboration

101 collaborators, 27 institutions, 11 countries

Andrea Pizarro | Université de Genève

通 NAGOYA UNIVERSITY

International laboratory covered by a cooperation agreement with CERN

Tsinghua University

UNIVERSITY ofWASHINGTON

The University of Manchester

FASER collaboration

Thank you for your attention!

