

LHCb Muon Detector for the High Lumi at LHC

Marco Poli Lener on behalf of the LHCb Collaboration

Outline

The Muon Apparatus design

Detector design for the Upgrade phase II (U2)

- Challenges
- Technological solutions
 - The micro-ResitiveWELL detectors
 - $\circ~$ New Front-End Electronics architecture
 - $\circ~$ New improved Shielding

Transfer technology to the industry of the detector manufacturing process

Summary & Outlook

Muon system at U2 (as in fTDR)

CURRENT APPARATUS: 4 stations, each composed by 4 layers of gas detector (MWPC) OR-ed readout + iron filters

The original detector has been largely reused at U1 (2x10³³ cm⁻²s⁻¹)

New off detector electronics + remove strips to readout directly pad in few crowed regions to reduce ghosts

The big increase in luminosity at U2 will force in greater changes

MUON system @ U2: define 3 Muon designs with comparable performance wrt the present one targeting at 3 different luminosity (*):

- Baseline_1.5 L=1.5x10³⁴ cm⁻²s⁻¹
- Middle_1.3 L=1.3x10³⁴ cm⁻²s⁻¹
- Middle_1.0 L=1.0x10³⁴ cm⁻²s⁻¹
- \rightarrow keeping high hit efficiency in each station (MuonID efficiency ~ station efficiency⁴)
- ightarrow reducing the accidental hit due to the high background rate

*Given a reasonable cost envelope

https://cds.cern.ch/record/2776420/

Solutions proposed in the FTDR (2021), currently under scrutiny

3

Rate capability up to ~ 1 MHz/cm²

 → MWPC replaced in the inner regions by µ-RWELL technology (R1 and R2)

Rate capability up to ~ 1 MHz/cm²

 → MWPC replaced in the inner regions by µ-RWELL technology (R1 and R2)

Muon Inefficiency due to FEE deadtime & particle rate

- → Small pads readout in R1 and R2 for μ -RWELL
- → New MWPC with increased granularity (M2R3)
- → Readout individual FEE channels instead the OR

Rate capability up to $\sim 1 \text{ MHz/cm}^2$

 → MWPC replaced in the inner regions by μ-RWELL technology (R1 and R2)

Increase in misID due to large occupancy

- → Increase the shielding in front the Muon system
- → Change readout logic from OR of different gas layers to MAJORITY (2 out of 4): exploits the fact that most of the hits in the Muon System are background and come from particles that cross only one of the 4 gas layers, while muon are penetrating particles.

Muon Inefficiency due to FEE deadtime & particle rate

- → Small pads readout in R1 and R2 for μ -RWELL
- → New MWPC with increased granularity (M2R3)
- → Readout individual FEE channels instead the OR

 $98.8 \pm 0.2\%$

 $95.4 \pm 0.3\%$

 $96.9 \pm 0.4\%$

 $94.8 \pm 0.4\%$

 $\mathbf{R4}$

 2μ , all regions

Rate capability up to ~ 1 MHz/cm²

→ MWPC rep	Muon Track	efficiency	y vs regio	no FFF d	eadtime & pa	article rate	
technology	Muon configuration (L = x 10^{34} cm ⁻² s ⁻¹)	R1 R2		R3	R4	'ELL I2R3)	
	Current detector (1.0)	45.0	83.9	91.3	96.0	he OR	
Increase in	Middle ^(*) (1.0)	95.9	97.7	91.3	96.0		
→ Increase	Middle ^(**) (1.3)	95.9	98.0	92.5	95.1	ie ^{ip} Bi-Gap	
→ Change r to MAJO of the bit	Baseline ^(**) (1.5)	95.4	97.9	92.1	94.6	Bi-Gap	
come fro layers, w	 (*) μ-RWELL in R1&R2 + FEE majority (**) improved shielding + new MWPC 	implementa with higher	ition granularity	± 0.2% ± 0.8% ± 0.2% ± 0.3% ± 0.3% in R3 + (*)	ap-A ap-B ap-C ap-D	TDC + Nhit>1	
107/08	N Delilener - Ulh Nuer De	loolor lor the High					

M. Poli Lener – LHCb Muon Detector for the High Lumi at LHC

Inner regions @ U2

μ-RWELL detector requirements^[*]

- Rate up to **1 MHz/cm²** on detector single gap
- Rate up to **700 kHz** per electronic channel
- Efficiency (4 gaps) > 98% in the single bunch-crossing (25 ns)
- Stability up to **1C/cm²** accumulated charge in 10y in M2R1, G=4000

Detector size & quantity (4 gaps/chamber - redundancy)

• R1÷R2: 576 detectors, size 30x25 to 74x31 cm², 90 m² detector – 130 m² DLC

		• •	•
87171	158083	195088	101979
130403	285249	335035	140339
193482	433458 727665	685944 459769	223005
245971	802007	774528	269882
253768	669975	741341	285779
188207	460502 754272	737256 465171	200051
135798	275142	326036	149601
85221	160448	177895	96254

Rates on M2R1-R2 (Hz/cm²)

At **Run 3** start, rate **measurements** perfomed for different luminosity values and **extrapolated** at **Run 5** conditions.

(*) https://cds.cern.ch/record/2776420/

The µ-RWELL detector [reminder]

The μ -RWELL is a single amplification Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. **The core is the \mu-RWELL_PCB**, realized by coupling three different elements

Applying a suitable voltage between the **top Cu-layer and the DLC** the WELL acts as a **multiplication channel for the ionization** produced in the conversion/drift gas gap.

<u>G. Bencivenni et al., The micro-Resistive WELL detector: a compact sparkprotected single amplification-stage MPGD, 2015 JINST 10 P02008</u>

High-rate DOT layout

DLC grounding by **conductive DOT** Pad R/O = 9×9 mm² Grounding: - pitch = 9mm - rim = 1.3mm

→ 97% geometric acceptance

20/07/2024

M. Poli Lener - LHCb Muon Detector for High Lumi at LHC

DOT Performance in a Beam Test

FATIC & future plans

Preamplifier features:

- Recovery time: adjustable
- Input signal polarity: positive & negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- ✓ Measures the arrival time of the input signal
- Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- Acknowledgment of the input signal
- ✓ Charge measurement: dynamic range > 50 fC, programmable charge resolution

FATIC3: Mainly a bug fixing plus some features integration wrt FATCIC 2

- Channel FSM bug fix
- Trigger data filter moved from FPGA to ASIC
- Increase of transmission speed from 320 to 640 Mbps
- Integrated monitoring ADC and voltage reference IP
- Cut of power consumption down to 150 mW

FATIC4: Performance improvement

- Lower dead time, from ~2 us to ~100 ns
- More digital features to make the chip closer to LHCb needs

Submission foreseen for 2025

μ-RWEEL proto-O

2024

N. 4 M2R1 has been delivered in June 2024:
 → The CID (CERN-INFN-DLC) sputtering machine, a joint project between CERN and INFN, is used for preparing the Diamond-Like-Carbon (DLC) base material of the detector

X-ray characterization July 2024 Test Beam with FATIC3 Nov 2024

FATIC 3 Board

- N. 2 M2R2-M5R2 will be produced in 2025
- Test Beam with Fatic4 Autumn 2025

N.4 M2R1 proto-0

Test of FATIC3 Chip

M. Poli Lener - LHCb Muon Detector for High Lumi at LHC

μ-RWEEL proto-O

M. Poli Lener - LHCb Muon Detector for High Lumi at LHC

14

DLC sputtering

The **CID** (CERN-INFN-DLC) sputtering machine, a **joint project between CERN and INFN**, is used for preparing the **base material of the detector**. The potential of the DLC sputtering machine is:

- Flexible substrates up to 1.7m×0.6m
- Rigid substrates up to 0.2m×0.6m

In **2023**, the activity on CID focused on the **tuning** of the **machine on small foils:** very **good** results in terms of **reproducibility and uniformity**.

In 2024, the sputtering test are made on large foils, uniformity optimization is ongoing.

C.I.D.

Machine co-funded by CERN and INFN-CSN1. R&D led by INFN LNF, Roma3 and Naples

The graphite target The three external cathodes

20/07/24

Technology Transfer

[*] DLC Magnetron Sputtering machine co-funded by INFN- CSN1

Overview for external regions

MWPC production:

- The number of detectors to be built changes significantly based on the chosen LHCb scenario.
- Ongoing contacts with non LHCb institutes to plan the different scenarios

ASIC chip for MWPC:

- The current chip (CARIOCA*) does not support majority logic
- Tests planned for fall 2024 will check if the FATIC can also be used for MWPC, considering their different capacitance values and signal shapes
- If the FATIC cannot be used for MWPC, a new chip must be developed

(*) Development of the CARIOCA front-end chip for the LHCb muon detector

Summary & Outlook

The R&D on high-rate layouts for the LHCb upgrade has been completed:

the PEP-DOT layout shows good performance: gain of 10⁴, 98% efficiency, > 10 MHz/cm², 7ns time resolution

• General parameters of the detector have been set to maximize stability and gain:

 $\rho \geq$ 50 MΩ/sq, DOCA = 0.5 – 0.6mm (dead-zone < 3%)

prepreg thickness ~ 28µm

Amplification stage optimization by reducing the **well pitch**: from 140µm down to 90µm

• Large size:

M2R1 (25x30 cm² active area): delivered June '24, X-ray characterization in July, test beam in Nov. '24.

M2R2/M5R2 (31x75 cm² active area): design by the end of 2024, production beginning in 2025

The **detector manufacturing process** is nearly finalized:

Several construction steps are performed by ELTOS

Detector finalization (Kapton etching, electrical hot cleaning, etc.) is carried out at CERN

The **DLC sputtering machine**, C.I.D., will provide the base material, once the sputtering parameters are optimized

MUON ID

Let's recall the logic of the present muon identification, its performance essentially drives the design. Its relies in two steps

- Open a Field of Interest (FoI) along the track extrapolation with a size that depends on momentum (Multiple scattering dominates wrt pad size) + Ask for hit presence in consecutive stations according to track momentum
- Fit with a correlated c² to discriminate accidental from true tracks

It is clear that we need:

- high hit efficiency in each station
- not too high background rate to reduce the accidental

Momentum (GeV)	IsMuon	Max. Efficiency
P< 3	FALSE	-
3< P < 6	M2& M3	98%
6 < P < 10	M2& M3 & (M4 M5)	97%
P > 10	M2& M3 & M4 & M5	96%

Prepreg thickness optimization

NB: R&D for LHCb – pad R/O Future plans: searching for prepreg <u>thinner than 28um</u>

20/07/2024

Muon FE Architecture

 Rates @Run5: very high and dominated by single-gap bkg signals • New FE electronics read 4 gaps individually

- Custom 64 channel FE ASIC
 - 4 gaps read individually
 - Majoriy logic: validate events with Nhit>1 to reduce uncorrelated background hits
 - TDC info of a single gap (selectable via ECS) is read

Muon RO architecture (*)

Lнср

Current baseline architecture:

- Specific links dedicated to Data and TFC/ECS: 1 Data lpGBTx and 1 Master lpGBTx per GBT board
- Up to 14 FE chip per data lpGBTx via 1 eLink @ 640MHz

New architecture by numbers

- ASIC 13K
- IpGBTx: 1576 (Data) + 1576 (TFC/ECS)
- PCIe400 70
- FE Bandwidth 8.5Tbps

Presented by P. Albiccoco at "FEE@U2 workshop" https://indico.cern.ch/event/1348261/contributions/5741282/attachments/2786544/4858506/LHCb_240124.pdf

Preliminary schedule

à Nome attività	Durata	Inizio	Fine	Predecessori	2024 T1 T2 T3	2025 T4 T1 T2 T3	2026	202 T3 T4 T	27	2028	T3 T4	029 T1 T2 T3	2030	T3 T4	2031 T1 T2 1	2032 13 T4 T1	2 T2 T3
MWPC	97.03 mes?	13/05/24 09:00	02/05/32 09:00		-												-
MWPC construction	68 mes?	01/10/26 09:00	02/05/32 09:00					-		-							-
Decision on construction	0 mes?	01/10/26 09:00	01/10/26 09:00					⊕ 01/10									
Material procurement	12 mes?	21/12/26 09:00	16/12/27 09:00	3,40						4							
Detector production	37 mes?	16/12/27 09:00	30/12/30 09:00	4					9						٦		
FE installation	12 mes?	08/05/31 09:00	02/05/32 09:00	5,18													
MWPC ASIC	74.33 mes?	01/10/24 09:00	09/11/30 09:00		r												
Investigate usage of ASIC RWELL	9 mes?	01/10/24 09:00	28/06/25 09:00				i i	l i i		i i	i.		- i	i		i i	
Start of MWPC ASIC Design	0 mes	01/10/26 09:00	01/10/26 09:00					<u></u> ●01/10									
MWPC ASIC Design	29 mes?	01/10/26 09:00	17/02/29 09:00									1					
ASIC version 1 (design and production)	18 mes?	01/10/26 09:00	24/03/28 09:00	9		1		4		- -	i i			i i		i i	
ASIC version 2 (design and production)	8 mes?	22/06/28 09:00	17/02/29 09:00	16								-					
Production (engineeering run, packaging, tes	t) 18 mes	18/05/29 09:00	09/11/30 09:00	17,40								-					
MWPC FE	43 mes?	26/10/27 09:00	08/05/31 09:00													1	
Prototyping + test	19 mes?	26/10/27 09:00	18/05/29 09:00														
Proto1 test (ASIC ver1)	8 mes?	26/10/27 09:00	22/06/28 09:00	11FI-5 mes					A								
Proto2 test (ASIC ver2)	8 mes?	20/09/28 09:00	18/05/29 09:00	12FI-5 mes						1	4			1		- I -	
Production	11 mes?	12/06/30 09:00	08/05/31 09:00	13FI-5 mes									•				
RWELL	81.73 mes?	13/05/24 09:00	29/01/31 09:00							-					7		
RWELL construction	74.73 mes?	09/12/24 09:00	29/01/31 09:00												7		
R&D	20 mes?	09/12/24 09:00	01/08/26 09:00	36FF				K									
Validation M2R1 design with FATIC3	0 mes	31/12/24 09:00	31/12/24 09:00	35		31/12											
	0 mes	31/12/25 09:00	31/12/25 09:00				31/12										
Prototyping	11 mes?	31/12/25 09:00	26/11/26 09:00	24			4										
Detector production	40 mes?	21/12/26 09:00	04/04/30 09:00	40,22						1							
FE installation	30 mes?	12/08/28 09:00	29/01/31 09:00	38FI-3 mes						i r							
RWELL ASIC	49.73 mes?	13/05/24 09:00	13/06/28 09:00							1							
RWELL ASIC Design	27 mes?	13/05/24 09:00	01/08/26 09:00														
FATIC3 (production and test)	2 mes?	13/05/24 09:00	12/07/24 09:00			- II i	i				i i		i i	i			
FATIC4 (production and test)	9 mes?	09/11/24 09:00	06/08/25 09:00	35		* **											
FATIC5 (production and test)	9 mes?	04/11/25 09:00	01/08/26 09:00	36			•	ы н									
Production (engineeering run, packaging, t	te 18 mes?	21/12/26 09:00	13/06/28 09:00	40,37				- -		Ь	i i		i i	i i		i i	
RWELL FE	54.73 mes?	13/05/24 09:00	10/11/28 09:00														
Proto1 test (FATIC3)	6 mes?	13/05/24 09:00	09/11/24 09:00			\mathbf{P}											
Proto2 test (FATIC4)	8 mes?	09/03/25 09:00	04/11/25 09:00	31FI-5 mes				- 11			1		1	1		- I -	
Proto3 test (FATIC5)	8 mes?	04/03/26 09:00	30/10/26 09:00	32FI-5 mes			4			l l							
Production	10 mes?	15/01/28 09:00	10/11/28 09:00	33FI-5 mes						¥`							
TDR	24 mes?	31/12/24 09:00	21/12/26 09:00		-												
TDR writing	12 mes?	31/12/24 09:00	26/12/25 09:00	23		L.											
TDR approvation	6 mes?	26/12/25 09:00	24/06/26 09:00	41						i i							
INFN financing	6 mes?	24/06/26 09:00	21/12/26 09:00	42										1			

Rate capability up to $\sim 1 \text{ MHz/cm}^2$

 \rightarrow MWPC replaced in the inner regions by μ -RWELL technology (R1 and R2)

Muon Inefficiency due to FEE deadtime & particle rate

- → Increase granularity in R1 and R2 for the μ -RWELL
- → New MWPC with increased granularity in most critical R3 part
- → Readout individual FEE channels instead of group of them

Increase in misID due to large occupancy

- → Increase the shielding in front the Muon system
- → Change readout logic from OR of different gas layers to MAJORITY (2 out of 4): exploits the fact that most of the hits in the Muon System are background and come from particles that cross only one of the 4 gas layers, while muon are penetrating particles.

Muon Track efficiency vs region

Muon configuration	R1	R2	R3	R4
Current detector (1.0)	45.0	83.9	91.3	96.0
Middle (1.0)	95.9	97.7	91.3	96.0
Middle (1.3)	95.9	98.0	92.5	95.1
Baseline (1.5)	95.4	97.9	92.1	94.6