

AugerPrime Status and Prospects for the next decade

Martin Schimassek for the Pierre Auger Collaboration

The Pierre Auger Observatory

PIERRE AUGER OBSERVATORY

- largest cosmic-ray observatory in the world, operating since 2004

Measurement Principle

$$E_{\rm cal} = \int_0^\infty \left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\rm obs} \mathrm{d}X$$

Radio Detector (RD): 100% duty cycle

slide by R.Engel

Results of Phase I

- largest ever exposure of >80 000 km² x sr x yr: spectrum over 4 decades in energy
- first >5sigma anisotropy result (dipole)

A.Brichetto, PoS(ICRC2023) 398

Equatorial coordinates, smoothed by a top-hat window of 45°.

Auger Coll., Science 357 (2017) 1266 Auger Coll., Astrophys. J. 868 (2018) 4 G.Golup, PoS(ICRC2023) 252, subm.ApJ

Motivation of AugerPrime

PIERRE AUGER OBSERVATORY

- cosmic-ray mass composition increasingly heavy (and mixed) with higher energies
- → selecting high rigidity events
- goals: event-by-event handle an mass-composition
- \rightarrow particle astronomy?
- high resolution mass composition measurement to the highest energies
- insights into hadronic interactions
- → enable reanalysis of Phase I data

3D trajectories projected on X-Y plane

B=10⁻⁰ gauss

Cell size 1Mpc B dir random

Introduction: AugerPrime

PIERRE AUGER OBSERVATORY

- New hardware:
 - additional scintillators (SSD)
 - a small PMT (sPMT)
 - radio antennas (RD)
 - underground muon counters (UMD)
 - new electronics

AugerPrime: Upgraded WCD

PIERRE

780 800

800

 $lg(S_{WCD}/VEM)$

1000

LPMT □ SPMT

- upgraded WCD: higher dynamic range + higher bandwidth electronics, more CPU-power

lg(S/VEM or MIP)

AugerPrime: SSD

PIERRE AUGER

- add 3.8 m² Scintillator (SSD) on top of the existing SD-station
- different response to EM / muons allows estimation of mass on event-by-event basis

AugerPrime: RD

- deploy SALLA antennas on every SD-station
- measurement possible for very inclined showers
- extinction of EM-component allows muon-measurement With the SD → EM + muons with RD + WCD

AugerPrime: UMD

PIERRE
AUGER
OBSERVATORY

- in infilled region (750 m / 433 m spacing): deploy under ground muon detectors
- 30 m² of scintillators buried 2.3 m
- → shield EM-components
- → direct measurement of muon component at ~ 10¹⁸ eV

AugerPrime: Deployment Status

- SSD (green) and electronics (red dot): deployment where accessible finished July 2023

- RD-deployment in two steps: antenna-hardware (blue) and electronics (purple)

Commissioning Status

- data collection with AugerPrime for commissioning started with deployment

- currently last steps in commissioning the new components are on-going

 physics data taking to commence at latest beginning 2025

A first glimpse: RD-data

PIERRE AUGER OBSERVATORY

- also RD-data taking is on-going: first events for commissioning are there

Prospects

- Deep learning applications can profit from additional data: Phase I: depth of shower maximum from WCD alone

 \rightarrow e.g. training directly on mass composition rather than Xmax

ightarrow better control of systematics: compare with non-DL methods

(muon deficit)

Martin Schimassek – AugerPrime

Summary

- AugerPrime: continue and enhance the successful operation of the Pierre Auger Observatory > 2030
- new possibilities of primary mass measurements at ultra-high energies
- deployment almost finished for all new detector componer
- AugerPrime will remain the largest observatory for the next decade: now with mass sensitivity!

Back Up

Hadronic Interactions

- rely on simulations for interpretation of air-shower measurements
- need high-energy hadronic interaction models
- → tests of these models: Should describe Energy, Xmax, and number of muons at the same time
- \rightarrow use hybrid measurements: FD \rightarrow E, Xmax SD \rightarrow muons
- see as well: J. Vicha (this conference)

Auger Coll., PRD91 (2015) 032003+059901

AugerPrime: RD

- existing radio detector (since 2010)
 Auger Engineering Radio Array (AERA)
- 153 stations, 17 km²
- demonstration of measurements: basis for AugerPrime RD

Martin Schimassek – AugerPrime