Top quark and quarkonia production in heavyion collisions with the ATLAS experiment

Yue Xu On behalf of the ATLAS Collaboration

University of Washington ICHEP 2024, Prague July 17-24, 2024

61

- Observation of $t\bar{t}$ production in p + Pb collisions at 8.16 TeV arXiv:2405.05078 (submitted to JHEP)
- $\Upsilon(nS)$ nuclear modification factors at 5.02 TeV Phys. Rev. C 107 (2023) 054912

- Observation of $t\bar{t}$ production in p + Pb collisions at 8.16 TeV arXiv:2405.05078 (submitted to JHEP)
- Υ(*nS*) nuclear modification factors at 5.02 TeV <u>Phys.</u> <u>Rev. C 107 (2023) 054912</u>

Event candidate for $t\bar{t}$ process in p + Pb

p+Pb data collected in 2016 by ATLAS

- $\sqrt{S_{NN}} = 8.16 \text{ TeV}$
- 165 nb⁻¹ (57 nb⁻¹ in p+Pb, 108 nb⁻¹ in Pb+p)

Run: 313100 Event: 168745611 2016-11-18 22:14:23

Motivation

- Top quark is the heaviest elementary particle, $m_t \approx 172.5$ GeV, and is an important probe of:
 - Nuclear parton distribution functions (nPDFs) in a poorly constrained kinematic region
 - Gluon nPDF in the unexplored high Bjorken-x region
- $t\bar{t}$ cross section measured in two channels:
 - *ℓ*+jets channel (reported by CMS <u>PRL</u>
 <u>119, 242001 (2017)</u>)
 - dilepton channel (firstly measured)

 ℓ +jets: $t\bar{t} \to WbW\bar{b} \to \ell \nu_{\ell} bq\bar{q}'\bar{b}$ dilepton: $t\bar{t} \to WbW\bar{b} \to \ell \nu_{\ell} b\ell \bar{\nu_{\ell}}\bar{b}$

Event selection

- Objects:
 - Lepton ($\ell = e \text{ or } \mu$): $p_T > 18$ GeV and $|\eta| < 2.5$ ($|\eta| < 2.47$ for e)
 - Jet: $p_T > 20~{\rm GeV}$ and $\mid\!\eta\!\mid<2.5$
- **Signal regions** are defined according to number of leptons, number of jets and number of b-tagged jets
 - Six signal regions:
 - Four in ℓ +jets channel: $1\ell 1b e$ +jets, $1\ell 1b \mu$ +jets, $1\ell 2b$ incl e+jets, $1\ell 2b$ incl μ +jets
 - Two in dilepton channel: $2\ell 1b$, $2\ell 2b$ incl

Backgrounds

- Main backgrounds:
 - Fake-lepton contributions: estimated with data-driven method
 - W+jets process: estimated based on MC simulations
 - Z+jets process: estimated based on MC simulations

Fit results in signal regions

Systematic uncertainties

- Sources of systematic uncertainties:
 - Experimental systematics: lumi, jet, muon, electron...
 - Signal and background modelling
 - Systematics from data-driven background
- Dominant systematics: jet energy scale and signal modelling
- Total relative systematic uncertainty: 8%

Source	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$		
Source	unc. up [%]	unc. down [%]	
Jet energy scale	+4.6	-4.1	
$t\bar{t}$ generator	+4.5	-4.0	
Fake-lepton background	+3.1	-2.8	
Background	+3.1	-2.6	
Luminosity	+2.8	-2.5	
Muon uncertainties	+2.3	-2.0	
W+jets	+2.2	-2.0	
<i>b</i> -tagging	+2.1	-1.9	
Electron uncertainties	+1.8	-1.5	
MC statistical uncertainties	+1.1	-1.0	
Jet energy resolution	+0.4	-0.4	
<i>t</i> t PDF	+0.1	-0.1	
Systematic uncertainty	+8.3	-7.6	

Cross section measurement

- The $t\bar{t}$ cross section is calculated with the extracted value of $\mu_{t\bar{t}}$ by $\sigma_{t\bar{t}} = \mu_{t\bar{t}} \cdot A_{Pb} \cdot \sigma_{t\bar{t}}^{\text{th}}$
 - $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)}^{+4.8}_{-4.4} \text{ (syst.) nb}$
 - The total uncertainty is 9% (3% Stat., 8% Syst.)
 - The most precise $t\overline{t}$ measurement in HI collisions at LHC
- Significances in ℓ +jets and dilepton channels exceed 5σ separately
 - First observation in dilepton channel with p+Pb collisions

Comparison

- The measured $\sigma_{t\bar{t}}$ is compared with results from CMS, pp collisions and theory predictions
 - Consistent with the cross section in *pp* collisions (scaled and extrapolated)
 - Largest discrepancy from nNNPDF30 nPDF set

Nuclear modification factor $R_{pA} = \frac{\sigma_{t\bar{t}}^{p+Pb}}{A_{Pb} \cdot \sigma_{t\bar{t}}^{pp}}$

- $R_{pA} = 1.090 \pm 0.039$ (stat.)^{+0.094}_{-0.087} (syst.) (first measurement)
- Compared with theory predictions
- Largest discrepancy also from nNNPDF30

- Observation of *tt* production in *p* + *Pb* collisions at 8.16 TeV <u>arXiv:2405.05078</u> (submitted to JHEP)
- $\Upsilon(nS)$ nuclear modification factors at 5.02 TeV Phys. Rev. C 107 (2023) 054912

Introduction

- Quarkonia are important for characterizing the properties of the quark-gluon plasma (QGP)
 - Produced at the very early stage by the hard scattering
 - The sequential melting has been proposed as QGP thermometer

Bottomonium signal

- Υ mesons are reconstructed via $\Upsilon \rightarrow \mu\mu$ decay
- Υ mass spectra in pp and Pb+Pb collisions
- Production is suppressed in Pb+Pb, especially $\Upsilon(3S)$

Nuclear modification factor

 Excited states are more suppressed than the ground state

• R_{AA} smoothly decreases with increasing

collisions are more central)

centrality (increasing centrality means that

- Compare to 3 theory models:
 - Potential Non-relativistic quantum chromodynamics N.Brambilla et al.
 - Kinetic-rate equation approach including regeneration Du et al.
 - Cold nuclear matter effects Yao et al.
- All in agreement with data within experimental and theoretical uncertainties

Comparison to CMS

• ATLAS and CMS results seem consistent within uncertainties

Summary

- Observation of $t\bar{t}$ production in p + Pb collisions at 8.16 TeV
 - Provides the most precise cross section measurement in HI collisions at LHC
 - $t\bar{t}$ is firstly observed in dilepton channel in p+Pb collisions
 - R_{pA} is measured for the first time
- $\Upsilon(nS)$ nuclear modification factor at 5.02 TeV
 - R_{AA} <1 for all states and smoothly decreases with increasing centrality
 - The excited states are shown to be more strongly suppressed than the ground state

Thanks

Nuclear collisions in ATLAS

Motivation

- Top quark is the heaviest elementary particle, $m_t \approx 175 \text{ GeV}$
- The production modes of top and anti-top pair at LHC:
 - Gluon-gluon fusion (dominated)
 - Quark-antiquark annihilation
- An important probe of:
 - Nuclear parton distribution functions (nPDFs) in a poorly constrained kinematic region

0000

g 0000

Ŧ

► Ē

• Gluon nPDF in the unexplored high Bjorken-x region

Event selection

- Objects:
 - Lepton ($\ell = e \text{ or } \mu$): $p_T > 18 \text{ GeV}$ and $|\eta| < 2.5 (|\eta| < 2.47 \text{ for } e)$
 - Jet: $p_T > 20$ GeV and $|\eta| < 2.5$
- Signal regions are defined according to number of leptons, number of jets and number of b-tagged jets
 - Six signal regions: $1\ell 1b \ e$ +jets, $1\ell 1b \ \mu$ +jets, $1\ell 2b$ incl e+jets, $1\ell 2b$ incl μ +jets, $2\ell 1b$, $2\ell 2b$ incl

lepto	lepton+jets		dilepton			
e/mu		ee/mumu		emu		
1b	2bincl	1b	2bincl	1b	2bincl	
1 electror	n / 1 muon	2 electrons / 2 muons		1 electron + 1 muon		
		opposite charge		opposite charge		
		$m_{\ell\ell} > 45 \; \mathrm{GeV}$		$m_{\ell\ell} > 15 \text{ GeV}$		
$m_{\ell\ell} \not\in (80, 100) \mathrm{GeV}$						
>= 4 jets		>= 2 jets		>= 2 jets		
1 b jet	>= 2 b jets	1 b jet	>= 2 b jets	1 b jet	>= 2 b jets	

Top quark pair decay channels

- Measure $t\bar{t}$ cross section in two channels:
 - *t*+jets channel
 - dilepton channel
- The ℓ +jets has been reported by CMS
- The dilepton channel is firstly measured

 ℓ +jets: $t\bar{t} \to WbW\bar{b} \to \ell \nu_{\ell} bq\bar{q}'\bar{b}$ dilepton: $t\bar{t} \to WbW\bar{b} \to \ell \nu_{\ell} b\ell \bar{\nu_{\ell}}\bar{b}$

Event selection

- Objects:
 - Lepton ($\ell = e \text{ or } \mu$): $p_T > 18 \text{ GeV and } |\eta| < 2.5 (|\eta| < 2.47 \text{ for } e)$
 - Jet: $p_T > 20$ and $|\eta| < 2.5$
- Signal regions are defined according to number of leptons, number of jets and number of btagged jets
 - Six signal regions: $1\ell 1b \ e+jets$, $1\ell 1b \ \mu+jets$, $1\ell 1b$ incl e+jets, $1\ell 1b$ incl $\mu+jets$, $2\ell 1b$, $2\ell 1b$ incl

lepto	n+jets	di		oton	
e/mu		ee/mumu		emu	
1b	2bincl	1b	2bincl	1b	2bincl
1 electror	n / 1 muon	2 electrons / 2 muons		1 electron + 1 muon	
		opposite charge		opposite charge	
		$m_{\ell\ell} > 45 \; \mathrm{GeV}$		$m_{\ell\ell} > 15 \text{ GeV}$	
$m_{\ell\ell} \not\in (80, 100) \mathrm{GeV}$					
>= 4 jets		>= 2 jets		>= 2 jets	
1 b jet	>= 2 b jets	1 b jet	>= 2 b jets	1 b jet	>= 2 b jets

Nuclear modification factor

27

CMS comparisons

