Unraveling the origin of collectivity in high and low multiplicity pp and p–Pb collisions in ALICE at the LHC

- Wenya Wu^{1,2} (For the ALICE collaboration)
- 1, Niels Bohr Institute, Copenhagen
- 2, Fudan University, Shanghai

Wenya Wu (NBI)

• Anisotropy in azimuthal distribution of final-state particles with respect to the reaction plane:

$$\frac{dN}{d\phi} \approx 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$

• Initial conditions + collective expansion of the medium \rightarrow flow coefficients v_n

ALICE, JHEP 05 (2023) 243

• Anisotropy in azimuthal distribution of final-state particles with respect to the reaction plane:

$$\frac{dN}{d\phi} \approx 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$

• Initial conditions + collective expansion of the medium \rightarrow flow coefficients v_n

ALICE, JHEP 05 (2023) 243

Low-p_T region: mass ordering (hydrodynamics)

• Anisotropy in azimuthal distribution of final-state particles with respect to the reaction plane:

$$\frac{dN}{d\phi} \approx 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$

• Initial conditions + collective expansion of the medium \rightarrow flow coefficients v_n

ALICE, JHEP 05 (2023) 243

Low-p_T region: mass ordering (hydrodynamics)

Intermediate- $p_{\rm T}$ region: **baryon-meson grouping/ splitting** (partonic collectivity, quark coalescence)

• Anisotropy in azimuthal distribution of final-state particles with respect to the reaction plane:

$$\frac{dN}{d\phi} \approx 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \psi_n))$$

• Initial conditions + collective expansion of the medium \rightarrow flow coefficients v_n

ALICE, JHEP 05 (2023) 243

Low-p_T region: mass ordering (hydrodynamics)

Intermediate- $p_{\rm T}$ region: **baryon-meson grouping/ splitting** (partonic collectivity, quark coalescence) \checkmark High- $p_{\rm T}$ region: jet-fragmentation

Collective flow in small systems

- Sizable flow observed across all collision systems
- Long-range correlations confirmed **collectivity in** small systems

Collective flow in small systems

- Sizable flow observed across all collision systems
- Long-range correlations confirmed **collectivity in** small systems

The methodology is peripheral subtraction \rightarrow contribution of non-flow? Wenya Wu (NBI) **ICHEP 2024**

- Mass ordering is observed but not significant
- No concrete evidence of baryon-meson grouping/splitting

Long-range correlation

Non-flow suppression:

Long-range correlation

-3.4<η<-1.7

$$v_n\{2\} = \sqrt{\frac{V_{n\Delta}^{\text{TPC}-\text{FMDA}}V_{n\Delta}^{\text{TPC}-\text{FMDC}}}{V_{n\Delta}^{\text{FMDA}-\text{FMDC}}}}$$

FMDA-FMDC (long-range) correlation

ALI-PREL-345489

Template fit

Non-flow suppression:

• Template fit \rightarrow correlation function can be described as a superposition of non-flow and flow:

$$Y(\Delta \phi) = FY(\Delta \phi)^{peri} + G[1 + \sum_{n=2}^{\infty} 2V_{n\Delta}co]$$

Peripheral events, non-flow dominated

Flow signal

TF is the state of the art approach to extract the v_2 coefficient in analysis of small collision systems

 $\Delta \phi$

Flow of identified particles Pb–Pb, p–Pb, and pp

- Hydro-dominated mass ordering at low $p_{\rm T}$ ($p_{\rm T} < 3 {\rm GeV}/c$) in all systems

Baryon-meson grouping ($\sim 1\sigma$ confidence) /splitting ($> 5\sigma$ confidence) at intermediate $p_{\rm T}$ $(3 < p_T < 5 \text{GeV}/c)$ in all collision systems \rightarrow partonic collectivity in small collision systems

$N_{\rm ch}$ dependence of identified-particle v_2 in p–Pb collisions

ALI-PREL-573060

- Mass ordering observed in all multiplicity intervals in p-Pb • Baryon-meson grouping ($\sim 1\sigma$) and splitting ($> 5\sigma$) are observed in $N_{\rm ch}$ >25
- In $N_{\rm ch}$ <25, grouping and splitting ($\sim 2\sigma$) is diluted

Wenya Wu (NBI)

ALI-PREL-573055

Model comparison in high-multiplicity p–Pb collisions

ALI-PREL-573060

Y. Wang, arXiv:2401.00913

- Baryon-meson grouping/splitting reproduced by Hydrodynamic+Coalescence +Fragmentation (HCF) model
- grouping/splitting

Y. Wang, arXiv:2401.00913

Hydrodynamic+Fragmentation (HF) model underestimates the v_2 , fails to explain the

Model comparison in high-multiplicity p–Pb collisions

- +Fragmentation (HCF) model
- **AMPT** with string-melting configuration fails to explain the grouping/splitting

Baryon-meson grouping/splitting is reproduced by Hydrodynamic+Coalescence

$N_{\rm ch}$ dependence of identified-particle v_2 in pp collisions

ALI-PREL-573050

- Mass ordering only observed in $N_{\rm ch}$ >25 in pp
- $\ln N_{\rm ch}$ <25, grouping and splitting (< 1σ) disappears

Wenya Wu (NBI)

ALI-PREL-573045

Baryon-meson grouping ($\sim 1\sigma$ **) and splitting (** $> 5\sigma$ **)** are observed in $N_{\rm ch}$ >25

Ultra long-range correlation in ALICE

Non-flow removal by the template fit

ALICE NEW

- Source of long-range correlation at low multiplicity pp and p-Pb?

Wenya Wu (NBI)

ALICE NEW

Longest-range correlation of charged hadrons in low multiplicity in pp and p-Pb

Conclusion

- **Partonic collectivity** observed in small collision systems;

p–Pb, disappears in pp

- The **HCF** model reproduces the grouping/splitting of v_2 ;
- \bullet

in small collisions with ALICE Run 3 data.

- The silicon tracking system of the future ALICE 3 experiment at the LHC (Terrace 2B, 18/7, 15:39)
- The ALICE 3 particle identification systems (Terrace 2B, 18/7, 17:36)
- Innovative silicon timing sensors for the future ALICE 3 experiment (Foyer Floor 2, 19/7, 19:00)
- Polarization and flow of multi-strange hadrons with ALICE (Club B, 18/7, 15:04)
- Light-flavour particle production as a function of transverse spherocity with ALICE (Club B, 19/7, 08:47)

Wenya Wu (NBI)

• In low multiplicity ($N_{\rm ch} < 25$) : Baryon-meson grouping/splitting is diluted in

Ultra long-range correlation found in low multiplicity in small collisions;

• Search for partonic collectivity and long-range correlation in **lower** N_{ch} events

Talks/posters about ALICE Run 3 and flow at ALICE: • Study of collective phenomena via the production of heavy quarks and quarkonia in hadronic collisions with ALICE (Club B, 19/7, 17:53)

Thanks for your attention!

Back up

Validation of template-fit by PYTHIA

Wenya Wu (NBI)

ICHEP 2024

