Determination of the path-length of parton energy loss in quark-gluon plasma

Friday, 19 July 2024 15:21 (17 minutes)

Based on a data-driven approach and a scaling analysis, we demonstrate that the quenching of hadron spectra at RHIC and LHC allows for a precise determination of the path-length dependence of parton energy loss in quark-gluon plasma. We find that the average energy loss is proportional $\langle \epsilon \rangle \propto L^{\beta}$ with $\beta = 1.02^{+0.09}_{-0.06}$, consistent with the pQCD expectation of parton energy loss in a longitudinally expanding QGP. We also show that the azimuthal anisotropy coefficient divided by the collision eccentricity, v_2/e , follows the same scaling property as the p_{\perp} dependence of $R_{textnormalAA}$. This scaling is observed in data, which are reproduced by the model at large p_{\perp} . Finally, a linear relationship between v_2/e and the derivative of $R_{textnormalAA}$ is found and confirmed in data, offering an additional way to probe the L dependence of parton energy loss using measurements from LHC Run 3.

Alternate track

I read the instructions above

Yes

Primary authors: ARLEO, Francois (Subatech, Nantes); FALMAGNE, Guillaume (Princeton University)

Presenter: ARLEO, Francois (Subatech, Nantes)

Session Classification: Heavy Ions

Track Classification: 07. Heavy Ions