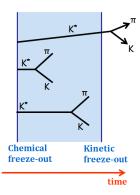
# $K^*/K$ ratio and the time between freeze-outs for intermediate-mass Ar+Sc system at the SPS energy range

#### Bartosz Kozłowski for the NA61/SHINE Collaboration

Warsaw University of Technology

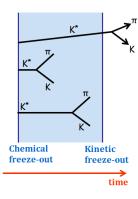







#### Motivation

- K\*(892)<sup>0</sup> resonance
  - $\Gamma = 47.3 \text{ MeV} \rightarrow \tau = 4.17 \text{ fm/}c$
  - $K^*(892)^0 \to K^+\pi^-$  (BR = 2/3)
- K\* spectra and yields can be used as input data to Blast-Wave and Hadron Resonance Gas models
- $m{K}^*$  lifetime is comparable with time between freeze-outs ightarrow some resonances may decay inside the fireball
- Momenta of their decay products can be modified due to elastic scatterings  $\rightarrow$  problems with experimental reconstruction of resonance via invariant mass  $\rightarrow$  suppression of the observed  $K^*$  yield



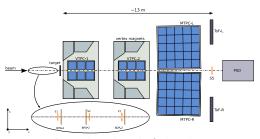

#### Motivation - time between frezee-outs

- Assuming no regeneration processes (Fig.) time between freeze-outs can be determined from (STAR. Phys.Rev.C 71. 064902, 2005; C. Markert, G. Torrieri.
  - J. Rafelski, AIP Conf. Proc. 631, 533, 2002):

$$\frac{\textit{K}^*}{\textit{K}}|_{\textit{kinetic}} = \frac{\textit{K}^*}{\textit{K}}|_{\textit{chemical}} \cdot e^{-\frac{\Delta t}{\tau}}$$

- $\frac{K^*}{K}|_{chemical} K^*/K$  ratio in inelastic p+p collisions
- $\frac{K^*}{K}|_{kinetic} K^*/K$  ratio in central Ar+Sc collisions
- $\tau K^*(892)^0$  lifetime = 4.17 fm/c
- $\Delta t$  time between chemical and kinetic freeze-outs (in  $K^*$  rest frame)

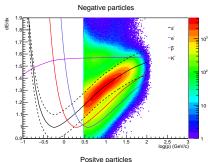


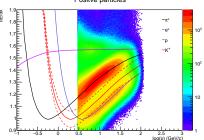

(1)

The picture assumes that conditions at chemical freeze-out of p+p and Ar+Sc are the same

### NA61/SHINE experiment

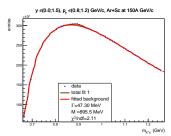
#### NA61/SHINE research program:


- Strong interaction physics
  - Study the properties of the onset of deconfinement
  - Search for the critical point of strongly interacting matter
  - Direct measurement of open charm
- Neutrino and cosmic-ray physics
  - Measurements for neutrino programs (J-PARC, Fermilab)
  - Measurements for cosmic-ray physics (Pierre-Auger, KASCADE, satellite experiments)




Detector layout during Ar+Sc data taking NA61/SHINE, Eur.Phys.J.C 84, 416, 2024

- Fixed-target, multipurpose spectrometer
- 4 TPCs tracking and PID (by dE/dx)
- PSD centrality selection


### Analyzed data and particle identification

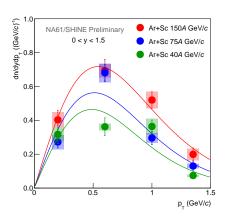


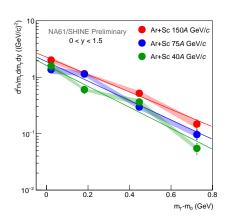


- Analyzed data: 0-10% central Ar+Sc collisions at 40A, 75A, 150A GeV/c ( $\sqrt{s_{NN}} = 8.8, 11.9, 16.8$  GeV)
- Candidates for  $K^+$  and  $\pi^-$  were selected based of their energy loss (d $E/\mathrm{d}x$ ) in TPCs
- Particles were accepted if they were located  $2\sigma_{\pi}$  (for  $\pi^{-}$ ) and  $1.5\sigma_{K}$  (for  $K^{+}$ ) around their empirical parametrizations of Bethe-Bloch curves
- $\sigma_\pi=0.052$  and  $\sigma_K=0.044$  NA61/SHINE, Eur.Phys.J.C 82, 322, 2022

# $K^*(892)^0$ signal extraction

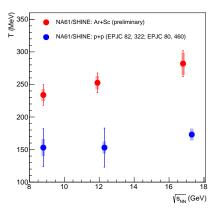


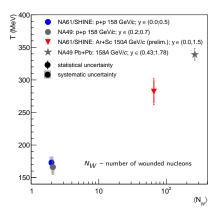




Template method (NA61/SHINE, Eur.Phys.J.C 80, 460, 2020)

$$f(m_{K^{+}\pi^{-}}) = a \cdot T_{res}^{MC}(m_{K^{+}\pi^{-}}) + b \cdot T_{mix}^{DATA}(m_{K^{+}\pi^{-}}) + c \cdot BW(m_{K^{+}\pi^{-}})$$

- $T_{mix}^{DATA}(m_{K^+\pi^-})$  background estimated using mixing method
- $T_{\rm res}^{MC}(m_{K^+\pi^-})$  resonance background estimated using reconstructed Monte Carlo data (combination of tracks that come from decays of resonances different than  $K^*(892)^0$  and combination of tracks where one comes from the decay of resonance and one comes from direct production in primary interaction)
- $BW(m_{K^+\pi^-})$  Breit-Wigner distribution
- a, b, c normalisation factors


# $K^*(892)^0$ $p_T$ and $m_T$ distributions



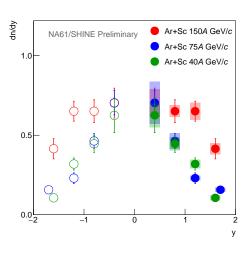



Transverse momentum and transverse mass spectra of  $K^*(892)^0$  measured in 0-10% central Ar+Sc collisions at 0 < y < 1.5

# $K^*(892)^0$ inverse slope parameters

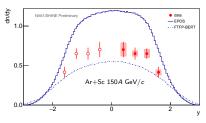


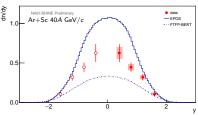


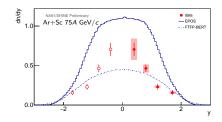

#### Values of T are larger in A+A due to radial flow

Inverse slope parameters were calculated in rapidity ranges specified below NA61/SHINE: Ar+Sc: 0 < y < 1.5, p+p 40 and 80 GeV/c: 0 < y < 1.5, p+p 158 GeV/c: 0 < y < 0.5; NA49: p+p: 0.2 < y < 0.7, Pb+Pb: 0.43 < y < 1.78

NA49: Phys.Rev.C 84, 064909, 2011; NA61/SHINE: Eur.Phys.J.C 80, 460, 2020, Eur.Phys.J.C 82, 322, 2022

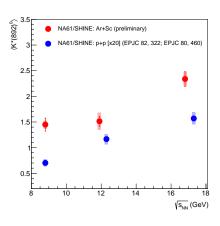


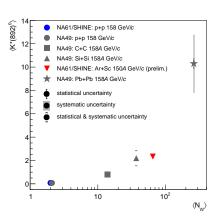


# $K^*(892)^0$ rapidity distributions at $0 < p_T < 1.5~{ m GeV}/c$




- Rapidity spectra of  $K^*(892)^0$  were measured in 0-10% central Ar+Sc collisions at  $0 < p_T < 1.5 \text{ GeV}/c$
- Full symbols represent the measurements, open symbols were obtained by reflection around mid-rapidity

# $K^*(892)^0$ rapidity distributions – comparison with models

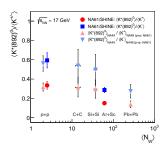


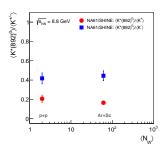



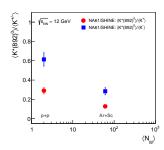



 Both EPOS1.99 and FTFP-BERT do not describe measured rapidity spectra

# $K^*(892)^0$ mean multiplicities





NA49: Phys.Rev.C 84, 064909, 2011;

NA61/SHINE: Eur.Phys.J.C 80, 460, 2020, Eur.Phys.J.C 82, 322, 2022

# $\langle K^* \rangle / \langle K^{\pm} \rangle$ ratios



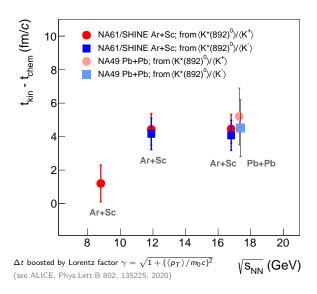




- Suppression of  $K^*$  in Ar+Sc at  $\sqrt{s_{NN}} \approx 17$  GeV similar to Pb+Pb
- No suppression of  $K^*$  observed in Ar+Sc at  $\sqrt{s_{NN}}=8$  GeV

#### NA49-

Phys.Rev.C 84, 064909, 2011, Phys.Rev.C 66, 054902, 2002, Phys.Rev.Lett. 94, 052301, 2005;


NA61/SHINE p+p:

Eur.Phys.J.C 80, 460, 2020, Eur.Phys.J.C 82, 322, 2022,

Eur.Phys.J.C 77, 671, 2017; NA61/SHINE Ar+Sc:

Eur. Phys. J. C 84, 416, 2024

#### Time between freeze-outs



#### Summary

- First results on  $K^*(892)^0$  production in 0-10% central Ar+Sc collisions at 40A, 75A, and 150A GeV/c are presented
- Values of dn/dy for all measured energies are between values obtained from EPOS1.99 and FTFP-BERT models
- $\langle K^* \rangle / \langle K^{\pm} \rangle$  ratios show expected suppression of  $K^*(892)^0$  production in Ar+Sc collisions at 150A and 75A GeV/c. There is no observed suppression in Ar+Sc collisions at 40A GeV/c
- Estimated times between freeze-outs for Ar+Sc collisions at 150A and 75A GeV/c are similar

# Thank you for your attention!

This work was supported by the Polish Ministry of Science and Higher Education (WUT ID-UB) and the Polish Minister of Education and Science (contract No. 2021/WK/10)

