

für Bildung

ili

ī

Bundesministerium LHCh und Forschung Universum und Materie Study of antihelium production at LHCb Dan Moise, on behalf of the LHCb collaboration **ICHEP** Prague 18th July 2024 -----

Bundesministerium für Bildung und Forschung

ī

LHCh Universum und Materie Antihelium production in A, decays Dan Moise, on behalf of the LHCb collaboration **ICHEP** Prague 18th July 2024 ----ili

Dark Matter Annihilation Can Produce a Detectable Antihelium Flux through Λ_b **Decays**

Martin Wolfgang Winkler^{1,*} and Tim Linden^{1,†}

Stockholm University and The Oskar Klein Centre for Cosmoparticle Physics, Alba Nova, 10691 Stockholm, Sweden

NB: discussion ongoing, e.g. <u>PRC 1018(2023) 024903</u> ₄

Observation of hypertriton at LHCb

Helium selection: conversion rejection

(in preparation)

Helium selection: conversion rejection

• **RICH**, Isolation, **C**alorimetry, and **OT** information combined into additional log-likelihood estimator: Λ_{LD}^{RICO} ⇒ removes residual background from conversions \Rightarrow signal / 10%, background \searrow 3x *cf.* previous publications

$m(\overline{\Lambda}_b^0) = 5.6 \,\text{GeV}$ $m({}^3\overline{\text{He}}) = 2.8 \,\text{GeV}$ Min. mass = 4.7 GeV Soft final-state particles

p ----- p

 $c\tau \simeq 450\,\mu m$

Three signal channels

- $\Lambda_h^0 \to {}^3\text{He}\overline{p}\overline{p}$ peak
- $\Lambda_b^0 \to {}^3\text{He}\overline{p}\overline{p}X$ at kin. threshold
- $\Lambda_b^0 \to {}^3\text{He}\overline{p}X$ at kin. threshold

(in preparation)

(in preparation)

<u>LHCb-CONF-2024-005</u> (in preparation)

 $\mathcal{B}(\Lambda_b^0 \to {}^3\text{He}\overline{p}\overline{p}X) < 1.6 \times 10^{-8}$

 $\mathcal{B}(\Lambda_b^0 \to {}^3\text{He}\overline{p}X) < 3.6 \times 10^{-8}$

 $\mathcal{B}(\Lambda_{b}^{0} \rightarrow {}^{3}\text{He}\overline{p}\overline{p}) < 1.9 \times 10^{-9}$ profile likelihood NIMA458(2001)745-758

Summary

BACKUP

Kowalski, $\Lambda_b^0 \rightarrow {}^3\text{HeX}$ analysis

<u>JINST 19 (2024)270 P02010</u>

Background estimation

Performance flat in kinematics

Prompt and displaced helium

Extrapolation to $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}X)$

soft QCD

Normalisation data

- $\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-$ used often in LHCb, BF $\mathcal{O}(10^{-4})$ JHEP 08 (2014) 143
- aiming for purity: tight vertex and PID
- extended unbinned ML fit with shapes taken from MC
- 3 PID working points:
 - loose PID $(\Lambda_h^0 \to {}^3\text{He}\overline{p}\overline{p}(X) \text{ norm.})$
 - tight PID $(\Lambda_h^0 \rightarrow {}^3\text{He}\overline{p}X \text{ norm.})$
 - no PID (kinematic weights)

Upper limits

values & uncertainties of normalisation & expected bkg. $\mathcal{L}(\mathcal{B}_{\text{sig}}, c_{\text{norm}}, B) = \mathcal{P}(\mathcal{B}_{\text{sig}}/c_{\text{norm}} + B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}}, \sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B, \sigma_B)$

Upper limits

• CLs method based on Poisson likelihood

values & uncertainties of normalisation & expected bkg. $\mathcal{L}(\mathcal{B}_{\text{sig}}, c_{\text{norm}}, B) = \mathcal{P}(\mathcal{B}_{\text{sig}}/c_{\text{norm}} + B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}}, \sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B, \sigma_B)$

Upper limits values & uncertainties of normalisation & expected bkg. $\mathcal{L}(\mathcal{B}_{\text{sig}}, c_{\text{norm}}, B) = \mathcal{P}(\mathcal{B}_{\text{sig}}/c_{\text{norm}} + B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}}, \sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B, \sigma_B)$ 0.1 p-value • CLs method based on Poisson likelihood LHCb preliminary Observed • $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}\overline{p}X) < 1.6 \times 10^{-8}$ Expected $\pm 1\sigma$ Expected $\pm 2\sigma$

• $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}X) < 3.6 \times 10^{-8}$

Upper limits • CLs method based on Poisson likelihood

- $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}\overline{p}X) < 1.6 \times 10^{-8}$
- $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}X) < 3.6 \times 10^{-8}$
- similar results from invariant-mass fit, and from the Rolke method NIMA458(2001)745-758

values & uncertainties of normalisation & expected bkg. $\mathcal{L}(\mathcal{B}_{\text{sig}}, c_{\text{norm}}, B) = \mathcal{P}(\mathcal{B}_{\text{sig}}/c_{\text{norm}} + B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}}, \sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B, \sigma_B)$ 0.1 p-value LHCb preliminary Observed Median expected Expected $\pm 1\sigma$ 0.6 Expected $\pm 2\sigma$ 90% CL 0.4 0.2 0.0 2 3 $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{pp}X) \times 10^8$ LHCb preliminary

Upper limits

$$\mathcal{L}(\mathcal{B}_{\mathrm{sig}}, c_{\mathrm{norm}}, B) = \mathcal{P}(\mathcal{B}_{\mathrm{sig}}/c_{\mathrm{norm}})$$

CLs method based on Poisson likelihood

• $\mathcal{B}(\Lambda_b^0 \to {}^3\text{He}\overline{p}\overline{p}X) < 1.6 \times 10^{-8}$

• $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}X) < 3.6 \times 10^{-8}$

- similar results from invariant-mass fit, and from the Rolke method NIMA458(2001)745-758
- fit impractical for exclusive mode, Rolke used

• $\mathcal{B}(\Lambda_h^0 \to {}^{3}\text{He}\overline{p}\overline{p}) < 1.9 \times 10^{-9}$

values & uncertainties of normalisation & expected bkg. $(+B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}},\sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B,\sigma_B)$ 0.1 b-value LHCb preliminary Observed Median expected Expected $\pm 1\sigma$ 0.6 Expected $\pm 2\sigma$ 90% CL 0.4 0.2 0.0 2 3 $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{pp}X) \times 10^8$ LHCb preliminary

Upper limits

$$\mathcal{L}(\mathcal{B}_{\mathrm{sig}}, c_{\mathrm{norm}}, B) = \mathcal{P}(\mathcal{B}_{\mathrm{sig}}/c_{\mathrm{norm}})$$

CLs method based on Poisson likelihood

• $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}\overline{p}X) < 1.6 \times 10^{-8}$

• $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{p}X) < 3.6 \times 10^{-8}$

- similar results from invariant-mass fit, and from the Rolke method NIMA458(2001)745-758
- fit impractical for exclusive mode, Rolke used

• $\mathcal{B}(\Lambda_h^0 \to {}^{3}\text{He}\overline{p}\overline{p}) < 1.9 \times 10^{-9}$

• conservative extrapolation assuming isospin: $\Rightarrow \mathcal{B}(\Lambda_h^0 \to {}^{3}\text{HeX}) < 6.3 \times 10^{-8}$

values & uncertainties of normalisation & expected bkg. $(+B) \cdot \mathcal{G}(c_{\text{norm}}|\mu_{\text{norm}},\sigma_{\text{norm}}) \cdot \mathcal{G}(B|\mu_B,\sigma_B)$ 0.1 b-value LHCb preliminary Observed Median expected Expected $\pm 1\sigma$ 0.6 Expected $\pm 2\sigma$ 90% CL 0.4 0.2 0.0 2 3 $\mathcal{B}(\Lambda_h^0 \to {}^3\text{He}\overline{pp}X) \times 10^8$ LHCb preliminary

forward coverage

$\sigma_{b\overline{b}}$ up to \sim 500 μb

VELO

 $\sigma_{\rm IP} = (15 \pm 29/p_{\rm T}) \ \mu m \quad \sigma_p/p \in [0.5\%, 1\%]$

 $\varepsilon_{K\to K} \sim 95\%, \, \varepsilon_{\pi\to K} \sim 5\%$

 $\sigma_{E}/E = 1\% + 10\%/\sqrt{E}$

Calorimeters

 $\varepsilon_{\mu \to \mu} \sim 97\%, \, \varepsilon_{\pi \to \mu} \sim 1 - 3\%$

Muon stations

