Investigation of early magnetic field and angular momentum in ultrarelativistic heavy-ion collisions via D^{*+} -meson spin alignment with ALICE

42nd International Conference on High Energy Physics

Fabio Catalano* on behalf of the ALICE Collaboration 18^{th} July 2024

*CERN, fabio.catalano@cern.ch

Extreme conditions are obtained in non-central heavy-ion collisions

 Charged spectator motion produces large magnetic field (B) → ~ 10¹⁶ T, decreasing with time

Christakoglu et al. EPJC 81 (2021) 717

A highly vortical system is formed → large orbital angular momentum (L) STAR, Nature 548 (2017) 62
 rotational speed ω ~ 10²² s⁻¹

Extreme conditions are obtained in non-central heavy-ion collisions

- ▶ Charged spectator motion produces large magnetic field (B) → $\sim 10^{15}$ T, decreasing with time
- ► A highly vortical system is formed → large orbital angular momentum (L) STAR, Nature 548 (2017) 62
 - rotational speed $\omega \sim 10^{22}~{
 m s}^{-1}$
 - align particle spin projection along the spin quantisation axis through spin-orbit coupling

Extreme conditions are obtained in non-central heavy-ion collisions

- Charm quarks are produced in the early stages
 - $au_{\it prod} \leq \hbar/m_c \sim 0.1~{
 m fm}/c$
 - more sensitive to the high intensity of the EM fields than light quarks

Christakoglu et al. EPJC 81 (2021) 717

- For strongly-decaying vector mesons, rely on spin density matrix element ρ₀₀
 - $\rho_{00} = 1/3 \rightarrow$ no spin alignment
 - $ho_{00}
 eq 1/3$ > spin alignment

Polarisation/quantisation axis choice

- ► Orthogonal to reaction plane in Pb–Pb collisions → same direction as L and B fields
- ► Direction of vector meson momentum in pp collisions → helicity axis

 Angular distribution of decay products w.r.t. chosen direction

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = N_0[(1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*]$$

- For strongly-decaying vector mesons, rely on spin density matrix element ρ₀₀
 - $ho_{00}=1/3$ ightarrow no spin alignment
 - $ho_{00}
 eq 1/3$ ightarrow spin alignment

• Angular distribution of decay products w.r.t. chosen direction $\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = N_0[(1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*]$

Two different mechanisms for the production of polarised vector mesons in heavy-ion collisions

Recombination of polarized quark in the QGP

$$\rho_{00} = \frac{1 - P_{\mathbf{q}} \cdot P_{\mathbf{\bar{q}}}}{3 + P_{\mathbf{q}} \cdot P_{\mathbf{\bar{q}}}} = \begin{cases} \gtrless 1/3^* & \Rightarrow \overrightarrow{\mathbf{B}} \\ < 1/3 & \Rightarrow \overrightarrow{\mathbf{L}} \end{cases}$$

Polarized quark fragmentation

$$ho_{00}=rac{1+eta\cdot P_{ ext{q}}^2}{3-eta\cdot P_{ ext{q}}^2}>rac{1}{3}$$

 P_{q} : quark polarisation

- $\beta :$ correlation among constituent quark and anti-quark
- $^{\circ}~>$ for neutral mesons, < for charged mesons

18/07/2024 - ICHEP

A Large Ion Collider Experiment (LHC Run 2)

- Signal selection based on machine-learning multiclass classification algorithm
 - reduce combinatorial background
 - separate prompt and non-prompt
 D*+-meson components

N.B.

 D^{*+} measured via $\mathrm{D}^{*+} \to \mathrm{D}^0 \pi^+$ strong decays

18/07/2024 - ICHEP

- Signal selection based on machine-learning multiclass classification algorithm
 - reduce combinatorial background
 - separate prompt and non-prompt
 D^{*+}-meson components

- Non-prompt contribution estimated using a data-driven approach
 - not requiring any model prediction as input

 D^{*+} spin alignment in Pb–Pb collisions — Analysis technique

ALICE

- ρ_{00} extracted in different centrality classes, $p_{\rm T}$ and rapidity intervals. Taking into account
 - event-plane finite resolution
 - non-prompt $\mathrm{D}^{*+}\text{-}\mathsf{meson}$ contribution

- First measurement of prompt D*+ spin alignment w.r.t. the reaction plane in Pb–Pb collisions
- Hint of centrality and $p_{\rm T}$ dependence
 - 0–10% \rightarrow ρ_{00} compatible with 1/3
 - 30–50% \rightarrow $\rho_{00}>1/3$ at high $p_{\rm T}$
- Consistent with polarised charm-quark hadronisation via fragmentation

- Rapidity dependence at high p_T in semicentral collisions
 - no spin alignment observed for |y| < 0.3
 - deviation from 1/3 in forward-backward region 0.3 < |y| < 0.8
- Compatible with longer-lasting magnetic field at larger rapidities
 - earlier-produced c quarks (larger momentum) are affected more by B field
- Effect of spin-dependent fragmentation functions for charm, unrelated to QGP? Chen et al. PRD 102 (2020) 034001

$\mathbf{D^{*+}}$ spin alignment in Pb–Pb collisions

Inclusive J/Ψ : PRL 131 (2023) 042303

- ► Spin-alignment measurements of prompt D*+ and inclusive J/Ψ mesons in good agreement within the uncertainties
- \blacktriangleright Rising trend for inclusive ${\rm J}/\Psi$ with $\ensuremath{p_{\rm T}}$
 - ho_{00} below 1/3 for $p_{
 m T} < 5~{
 m GeV}/c$
- Qualitative agreement with
 - $ho_{00} < 1/3$ \Rightarrow quark recombination and orbital angular momentum at low p_{T}
 - $\rho_{00}>1/3$ \Rightarrow quark fragmentation at high $p_{\rm T}$

^{18/07/2024 -} ICHEP

\mathbf{D}^{*+} spin alignment in pp collisions

- First measurements of prompt and non-prompt D*+ spin alignment at the LHC
- Measurements performed w.r.t. helicity axis
 - prompt $D^{*+} \rightarrow$ no evidence of spin alignment
 - non-prompt D^{*+} → $\rho_{00} > 1/3$, due to helicity conservation in b-hadron decays

 $\mathrm{B}(S=0)
ightarrow \mathrm{D}^{*+}(S=1) + X$

- Measurements in agreement with PYTHIA 8 + EVTGEN calculations
- Baseline for studies performed in Pb–Pb

D^{*+} spin alignment in pp collisions — Run 3

- ► Large datasets are being collected by the ALICE experiment during LHC Run 3
 - high data taking rates: 500 kHz in pp and 50 kHz in Pb-Pb collisions
 - improved detector performances

18/07/2024 - ICHEP

- Large datasets are being collected by the ALICE experiment during LHC Run 3
- Enabling more differential measurements in cos θ* and transverse momentum
 - up to $p_{
 m T} \sim 100~{
 m GeV}/c$
 - will allow us to test charm spin-dependent fragmentation functions
- Statistical uncertainties will be reduced by at least a factor 10 w.r.t Run 2 results

Summary

- First results of D*+ spin alignment in pp and Pb-Pb collisions are presented
- Significant polarisation observed for prompt
 D^{*+} in semicentral Pb–Pb collisions at high p_T
 - larger effect at forward-backward rapidity compared to midrapidity
 - consistent with quark fragmentation scenario
- Theoretical predictions are required for conclusive remarks!

More on polarisation by ALICE:

C. De Martin, 18^{th} Jul 15:19 R. Lavicka, 18^{th} Jul 15:36 Summary of spin alignment/polarisation for different vector mesons in ALICE

Backup

B field in heavy-ion collisions

18/07/2024 - ICHEP

EM field in heavy-ion collisions

18/07/2024 - ICHEP

Spin alignment vs $p_{\rm T}$ — pp collisions

18/07/2024 - ICHEP

