

Hyperon physics at BESIII

Wenjing Zheng on behalf of BESIII Collaboration Institute of High Energy Physics, Chinese Academy of Sciences 2024-07-18

42nd International Conference on High Energy Physics(ICHEP2024) Prague, 18-24 July 2024

Outline

Introduction

- Hyperon Physics at BESIII
 - Hyperon transverse polarization and CP tests
 - Hyperon weak radiative decays
 - Hyperon-nucleon interaction

■ Summary

Introduction

- A unique tool for various unresolved puzzles
 - Matter-antimatter asymmetry
 - Confinement of quarks into hadrons

- Exploration of hyperon spin properties
 - Polarization and CP tests in final states of hyperon and antihyperon pairs
 - Electromagnetic properties in weak radiative decays
 - Inner structure of matter and fundamental interactions in scattering processes

BESIII: A hyperon factory

BESIII

- ✓ Cover 93% of full solid angle
- ✓ 1.0 T superconducting solenoid
- ✓ Momentum resolution: 0.5% at 1 GeV/c
- ✓ Energy resolution: 2.5%(5%) at 1GeV/c in the barrel (end cap)
- \checkmark Time resolution: 68(60) ps in the barrel (end cap)

The world largest J/ψ and $\psi(2S)$ data samples

- ✓ 10 Billion J/ψ
- ✓ 2.7 Billion $\psi(2S)$

Front. Phys. 12(5), 121301 (2017)

Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B \ (\times 10^6)$
$J/\psi o A \bar{A}$	1.61 ± 0.15	16.1 ± 1.5
$J/\psi \to \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4
$J/\psi \to \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5
$J/\psi \to \Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2
$J/\psi \to \Xi^0 \bar{\Xi}^0$	1.20 ± 0.24	12.0 ± 2.4
$J/\psi \to \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0
$J/\psi \to \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4
$J/\psi \to \Xi(1530)^- \bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5
$\psi(2S) \rightarrow \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03

Hyperon transverse polarization and CP tests

- \checkmark Tests of CP symmetry in entangled $\Xi^0 \overline{\Xi}^0$ pairs
- \checkmark Strong and weak CP tests in sequential decays of polarized Σ^0 hyperons
- ✓ Novel method to extract the femtometer structure of strange baryons using the vacuum polarization effect
- Test of CP Symmetry in Hyperon to Neutron Decays
- ✓ Measurement of Λ transverse polarization in e^+e^- collisions at $\sqrt{s} = 3.68 3.71$ GeV
- ✓ First simultaneous measurement of Ξ^0 and $\overline{\Xi}^0$ asymmetry parameters in $\psi(3683)$ decay
- \checkmark Determination of the Σ^+ Timelike Electromagnetic Form Factors

PhysRevD.108.L031106 (2023) arXiv:2406.06118 arXiv:2309.04139 PhysRevLett.131.191802 (2023) JHEP10(2023)081 PhysRevD.108.L011101 (2023) PhysRevLett.132.081904 (2024)

New source for the CP asymmetry?

- Matter-antimatter asymmetry of the universe
 - Present universe: $\sim 10^{-10}$

CPV in SM is small	Size	#Events	Experiments
B meson (2001)	<i>O</i> (1)	10 ³	B factory
K meson (1964)	<i>O</i> (10 ⁻³)	106	Fix targets
D meson (2019)	<i>O</i> (10 ⁻⁴)	10 ⁸	LHCb

Not enough! Exploring new source for CP violation is necessary!

BESIII provides the opportunity to investigate CP violation in hyperons.

Hyperon production at BESIII

High probability into a hyperon-antihyperon pair

Phys. Rev. D 99, 056008 (2019)

■ Same or opposite helicity states (for spin-1/2 hyperons): A_{1/2 1/2}, A_{1/2 -1/2}

Hyperon polarization

\blacksquare The non-zero $\Delta \Phi$ represents the transverse polarization

Relation with form factors
$$G_E$$
, G_M :

$$\alpha_{\psi} = \frac{s|G_M|^2 - 4M_{\Xi}^2|G_E|^2}{s|G_M|^2 - 4M_{\Xi}^2|G_E|^2},$$

$$\Delta \Phi = \arg\left(\frac{G_E}{G_M}\right),$$
Physical etters B 772 (2017)

Decay parameters & CP observables

$$\boldsymbol{\alpha} = \frac{2Re(S*P)}{|S|^2 + |P|^2}, \boldsymbol{\beta} = \frac{2Im(S*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} sin\boldsymbol{\phi}$$
$$A_{CP} = \frac{\alpha_B + \alpha_{\overline{B}}}{\alpha_B - \alpha_{\overline{B}}}, \boldsymbol{\phi}_{CP} = \frac{\boldsymbol{\phi}_B - \boldsymbol{\phi}_{\overline{B}}}{2}$$

Phys. Rev. 108, 1645 (1957)

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^0\overline{\Xi}^0, \Xi^0(\overline{\Xi}^0) \rightarrow \Lambda\pi^0(\overline{\Lambda}\pi^0)$

- \checkmark A clear transverse polarization of Ξ^0 from J/ψ decay is observed for the first time.
- $\checkmark \Xi^0$ and Ξ^0 decay parameters are determined with the most precise, which are improved by more than one order of magnitude over the previous measurements.
- \checkmark The CP asymmetry observables are measured with the higher precision.

Parameter	This work	Previous result
$lpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66 ± 0.06 [42]
$\Delta \Phi(rad)$	$1.168 \pm 0.019 \pm 0.018$	
α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044 [49]
$\bar{\alpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043 [49]
$\phi_{\Xi}(rad)$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12 [49]
$\bar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13 [49]
α_{Λ}	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043 [20]
$ar{lpha}_\Lambda$	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047 [20]
$\xi_P - \xi_S(\text{rad})$	$(0.0 \pm 1.7 \pm 0.2) \times 10^{-2}$	
$\delta_P - \delta_S(\text{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7 \pm 8.5) \times 10^{-2}$ [49]
$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1\pm 6.9\pm 0.9) imes 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2}$ [49]
A^{Λ}_{CP}	$(6.9\pm5.8\pm1.8) imes10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [20]
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	
$\langle lpha_\Lambda angle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026 [20]

10 Billion J/ψ

#Signal: 327.3k

 $e^+e^- \rightarrow I/\psi, \ \psi(2S) \rightarrow \Sigma^0 \overline{\Sigma}^0, \Sigma^0(\overline{\Sigma}^0) \rightarrow \Lambda \gamma(\overline{\Lambda}\gamma)$

For the first time, the transverse polarizations of Σ^0 in J/ψ and $\psi(2S)$ decays are observed with opposite directions.

ICHEP 2024 | Praque

- $\checkmark \Sigma^0 / \overline{\Sigma}^0$ decay parameter is determined in the decay of the Σ^0 hyperons.
- \checkmark The CP test is performed in the subsequent decays of their daughter particles Λ and $\overline{\Lambda}$.

10 Billion J/ψ : #Signal: 1.1m 2.7 Billion $\psi(2S)$: #Signal: 51.8k		
Parameter	This work	Previous results
$lpha_{J/\psi}$	$-0.4133 \pm 0.0035 \pm 0.0077$	$-0.449 \pm 0.022 \ [51]$
$\Delta \Phi_{J/\psi}(\mathrm{rad})$	$-0.0828 \pm 0.0068 \pm 0.0033$	
$lpha_{\psi(3686)}$	$0.814 \pm 0.028 \pm 0.028$	0.71 ± 0.12 [51]
$\Delta \Phi_{\psi(3686)}(\mathrm{rad})$	$0.512 \pm 0.085 \pm 0.034$	
$lpha_{\Sigma^0}$	$-0.0017 \pm 0.0021 \pm 0.0018$	
$ar{lpha}_{\Sigma^0}$	$0.0021 \pm 0.0020 \pm 0.0022$	
$lpha_\Lambda$	$0.730 \pm 0.051 \pm 0.011$	0.748 ± 0.007 [44]
$ar{lpha}_\Lambda$	$-0.776 \pm 0.054 \pm 0.010$	-0.757 ± 0.004 [44]
A^{Λ}_{CP}	$(-3.0 \pm 6.9 \pm 1.5) \times 10^{-2}$	$(-2.5 \pm 4.8) \times 10^{-3} \ [2]$

10

2024-07-18

 $\checkmark J/\psi \rightarrow \overline{\Lambda}\Sigma^0$ is a purely electromagnetic process.

10 Billion J/ψ , #Signal: 26k

✓ Hadronic vacuum polarization (HVP) at the J/ψ resonance results in a significantly enhanced signal.

Hyperon weak radiative decays

- \checkmark Measurement of the Absolute Branching Fraction and Decay Asymmetry of $\Lambda \rightarrow n\gamma$
- $\checkmark \quad \text{Precision Measurement of the Decay } \Sigma^+ \to p\gamma \text{ in the Process } J\psi \to \Sigma^+ \overline{\Sigma}^-$

PhysRevLett.129.212002 (2022) PhysRevLett.130.211901 (2023)

Hyperon weak radiative decays

- Interplay of the electromagnetic, weak, and strong interactions
- Parity conserving (P wave) amplitude
- Parity violating (S wave) amplitude (if $\neq 0$)
- Asymmetric angular distribution of the daughter baryon in the hyperon rest frame

$$\frac{dN}{d\Omega} \propto \frac{N}{4\pi} (1 + \alpha_{\gamma} P_i \cdot \hat{p})$$

- In unitary symmetry, $\alpha_{\gamma} = 0$
- Experimentally, α_{γ} is large

$\Lambda ightarrow n\gamma$

 \checkmark The absolute branching fraction of the decay $\Lambda \rightarrow n\gamma$ is determined for the first time

- \checkmark More precise in branch fraction $\Lambda \rightarrow n\gamma$
- \checkmark 5.6 σ deviate from the previous measurement
- $\checkmark~\alpha_{\gamma}$ is in good agreement with the prediction in covariant baryon ChPT

 $\Sigma^+ o p\gamma$

 \checkmark The absolute branching fraction of the decay $\Sigma^+ \rightarrow p\gamma$ is determined with more precise

 \checkmark The decay asymmetry parameter α_{γ} is determined with the most precise $\times 10^{3}$ $\times 10^{3}$ 600 Events / (3 MeV/c) (3 MeV/c)3-(b) (a) 200 200 -0.22 0.23 0.2 0.22 0.23 0.24 **₽** Data ₹ Data Events, - Total Fit — Total Fit — – Signal Signal $\Sigma^+ \rightarrow p \pi^0 BKG$ $\overline{\Sigma} \rightarrow \overline{p} \pi^0 BKG$ Other BKG Other BKG 0.2 0.25 0.3 0.2 0.25 0.3 0.15 0.15 P_p (GeV/c) $P_{\overline{p}}$ (GeV/c) $\bar{\Sigma}^- \to \bar{p}\gamma$ $\Sigma^+ \rightarrow p\gamma$ Mode $N_{\rm ST}^{\rm obs}$ $2\,509\,380\pm2301$ $2\,177\,771\pm2285$ $\varepsilon_{\mathrm{ST}}$ (%) 39.00 ± 0.04 44.31 ± 0.04 $N_{\rm DT}^{\rm obs}$ 1306 ± 39 1189 ± 38 21.16 ± 0.03 23.20 ± 0.03 $\varepsilon_{\rm DT}$ (%) Individual BF (10^{-3}) 1.005 ± 0.032 0.993 ± 0.030 Simultaneous BF (10^{-3}) $0.996 \pm 0.021 \pm 0.018$ Individual α_{ν} -0.587 ± 0.082 0.710 ± 0.076 Simultaneous α_{ν} $-0.651 \pm 0.056 \pm 0.020$

- Precisions are improved by 78% and 34%
- BF is lower than PDG value by 4.2σ \checkmark
- $\checkmark \alpha_{\nu}$ is consistent with the world average value

Hyperon-nucleon interaction

- ✓ First Study of Reaction $\Xi^0 n \to \Xi^- p$ Using Ξ^0 -Nucleus Scattering at an Electron-Positron Collider
- \checkmark First Study of Antihyperon-Nucleon Scattering $\overline{\Lambda}p \rightarrow \overline{\Lambda}p$ and Measurement of $\Lambda p \rightarrow \Lambda p$ Cross Section
- ✓ First measurement of ΛN inelastic scattering with Λ from $e^+e^- → J/ψ → Λ\overline{Λ}$

PhysRevLett.130.251902 (2023) PhysRevLett.132.231902 (2024) PhysRevC.109.L052201 (2024)

Hyperon-nucleon interaction

- Well-established models exist for nucleon-nucleon interactions
- There are difficulties in modeling hyperon-nucleon scattering
- The lack of experimental measurements

Chin. Phys. C 48 (2024) 7, 073003

17

 $\Xi^0 n
ightarrow \Xi^- p$

✓ First study of hyperon-nucleon interactions in electron-positron collisions

 $\checkmark \Xi^0 n \to \Xi^- p$ is observed for the first time

 $\checkmark \sigma(\Xi^0 n \rightarrow \Xi^- p) = (7.4 \pm 1.8(\text{stat.}) \pm 1.5(\text{syst.})) \text{ mb}$

✓ $\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3(\text{stat.}) \pm 4.5(\text{syst.})) \text{ mb}$

ICHEP 2024 | Prague

$\Lambda p ightarrow \Lambda p$ & $\overline{\Lambda} p ightarrow \overline{\Lambda} p$

✓ First study of antihyperon-nucleon scattering

- $\checkmark \sigma(\Lambda p \rightarrow \Lambda p) = (12.2 \pm 1.6(\text{stat.}) \pm 1.1(\text{syst.})) \text{ mb}$
- $\checkmark \sigma(\overline{\Lambda}p \rightarrow \overline{\Lambda}p) = (17.5 \pm 2.1(\text{stat.}) \pm 1.6(\text{syst.})) \text{ mb}$

Phys. Rev. Lett. 132, 231902 (2024)

 \checkmark Differential cross sections of the two reactions are also measured

BESIII has collected a large number of J/ψ and $\psi(2S)$ data events

- Large hyperon pair productions $(\Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi \overline{\Xi})$
- Hyperon polarization measurement and CP violation searches
- ♦ Hyperon weak radiative decays
- ♦ Hyperon-Nucleus interaction studies
- More interesting results expected in the future!
 - ◆ Hyperon rare decays, electric dipole moment (EDM) searches

