

Light Meson decays at BESIII

Benhou Xiang (for the BESIII Collaboration) Institute of High Energy Physics, Beijing, China

the 42nd International Conference on High Energy Physics

Benhou Xiang

Light Meson decays at BESIII

Outline

≻Light meson physics

►BESIII: a light meson factory

 $> \eta / \eta'$ decays at BESIII

- Decay mechanisms
- Form factors

Light Meson Physics

□ Light mesons

Important roles in particle physics, e.g. strong interactions, Quark Model, CP violation ...

□ Rich physics

- ✓ Test ChPT predictions
- ✓ EM Form factors
- ✓ Test fundamental symmetries
- \checkmark Probe new physics beyond the SM

BESIII Detector

- □ The BESIII detector records symmetric e^+e^- collisions provided by the BEPCII storage ring.
- \Box The facility is used for studies of τ -charm physics.
- \Box Collected 10 billion J/ψ Events!

 $\checkmark J/\psi \rightarrow \gamma P, VP, \ldots$

Benhou Xiang

Decay list of light meson in BESIII

Decay channel	Physics	Publication	
$\eta' ightarrow ho \pi$	First Observation, BR	PRL118, 012001 (2017)	
$\eta' o \gamma \gamma \pi^0$	BR, B Boson	PRD96, 012005 (2017)	
$\eta' \to \gamma \pi^+ \pi^-$	BR, Box anomaly	PRL120, 242003 (2018)	
$\eta' ightarrow \pi^+ \pi^- \eta, \eta' ightarrow \pi^0 \pi^0 \eta$	Matrix elements, Cusp effect	PRD97, 012003 (2018)	
$P \rightarrow \gamma \gamma$	BRs, Chiral anomaly	PRD97, 072014 (2018)	
$\eta' o \gamma \gamma \eta$	UL	PRD100, 052015 (2019)	
Absolute BR of η' decays	BRs	PRL122, 142002 (2019)	
$\eta' ightarrow 4\pi^0$	CP violation, UL	PRD101, 032001 (2020)	
Absolute BR of η decays	BRs	PRD104, 092004 (2021)	
$\eta' \to \pi^+ \pi^- e^+ e^-$	BR, CP violation asymmetry	PRD103, 092005 (2021)	
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	BR, Decay dynamics	PRD103, 072006 (2021)	
$\eta' \to e^+ e^- e^+ e^-$	BR	PRD.105.112010(2022)	
$\eta' o \pi^0 \pi^0 \eta$	Cusp effect	PRL130, 081901 (2023)	
$\eta ightarrow \pi^+\pi^-\pi^0$, $3\pi^0$	Matrix elements, $m_u - m_d$	PRD107, 092007 (2023)	
$\eta' ightarrow 4\pi$	Amplitude analysis	PRD109, 032006 (2024)	
$\eta/\eta' \to \gamma e^+ e^-$	Form factor	PRD109, 072001 (2024)	
$\eta' \to \pi^+ \pi^- l^+ l^-$	Form factor, CP violation	JHEP07, 135(2024)	

BESIII: an important role in η/η' decays

- Decay mechanisms
- Form factors

Decay mechanisms

• Evidence of the cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$

PRL130,081901 (2023)

PRD109, 032006 (2024)

• Improved measurement of the decays $\eta' \to \pi^+ \pi^- \pi^{+(0)} \pi^{-(0)}$ and search for the rare decay $\eta' \to 4\pi^0$

 $\rightarrow \pi^0 \pi^0 \eta$

PRL 130, 081901 (2023)

high term of $\pi\pi$ rescattering EPJC 62, 511 (2009)

Benhou Xiang

20/07/2024

 $\rightarrow \pi^0 \pi^0 \eta$

 $\pi^0\pi^0\eta$

PRL 130, 081901 (2023)

♦ Non-relativistic effective field theory

♦ Evidence of the cusp effect around 3.5σ .

With cusp effect

Parameters	Fit I	Fit II	Fit III	Fit IV
		0.907 ± 0.012	0.142 ± 0.010	
a	$-0.075 \pm 0.005 \pm 0.001$	-0.207 ± 0.013	-0.145 ± 0.010	$-0.077 \pm 0.003 \pm 0.00$
b	$-0.073 \pm 0.005 \pm 0.001$	-0.051 ± 0.014	-0.038 ± 0.006	$-0.066 \pm 0.006 \pm 0.003$
d	$-0.066 \pm 0.003 \pm 0.001$	-0.068 ± 0.004	-0.067 ± 0.003	$-0.068 \pm 0.004 \pm 0.001$
$a_0 - a_2$	-	0.174 ± 0.066	0.225 ± 0.062	$0.226 \pm 0.060 \pm 0.012$
a_0	-	0.497 ± 0.094	-	-
a_2	-	0.322 ± 0.129	-	-
Statistical Significance	_	3.4σ	3.7σ	3.6σ

0.16

Benhou Xiang

 $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Chiral anomaly: triangle anomaly, box anomaly, pentagon anomaly

$$\pi^0 \to \gamma \gamma \qquad \eta' \to \gamma \pi^+ \pi^- \qquad K^+ K^- \to \pi^+ \pi^- \pi^0$$

Combination of ChPT and VMD model: (PRD85,014014 (2012))

Benhou Xiang

Light Meson decays at BESIII

10

PRD 109, 032006 (2024)

 $' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

PRD 109, 032006 (2024)

First measurement: $\alpha = 1.22 \pm 0.33 \pm 0.000$

 $\alpha = 1.22 \pm 0.33 \pm 0.04$

If $\alpha = 1$, triangle anomaly would be dominated.

Benhou Xiang

20/07/2024

 $\eta' \to \pi^{+(0)} \pi^{-(0)} \pi^0 \pi^0$

PRD 109, 032006 (2024)

 $B(\eta' \to \pi^+ \pi^- \pi^0 \pi^0) = (2.12 \pm 0.12 \pm 0.1) \times 10^{-4}$

 $B(\eta' \to \pi^0 \pi^0 \pi^0 \pi^0) < 1.24 \times 10^{-5}$

Form factors

- Improved measurements of the Dalitz decays $\eta/\eta' \rightarrow \gamma e^+ e^-$ PRD109, 072001 (2024)
- Measurement of the Electromagnetic Transition Form Factors in the decays $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

JHEP07, 135(2024)

Form Factor Physics

- ✓ Describe the complex internal structure or intermediate processes
- \checkmark It determines the size of hadronic quantum corrections in the calculation

Experimental input is needed to improve the precision of predictions!

Form Factor Physics

✓ The coupling of π^0 , η , and η' with photon in HLbL can be described using transition form factor (TFF).

TFFs as experimental input!

 TFFs are experimentally accessible in three different processes

 $\eta/\eta' \to \gamma e^+ e^-$

♦ The decay rate

$$\frac{d\Gamma(P \to \gamma l^+ l^-)}{dq^2 \Gamma(P \to \gamma \gamma)} = \frac{2\alpha}{3\pi} \frac{1}{q^2} \sqrt{1 - \frac{4m_l^2}{q^2}} \left(1 + \frac{2m_l^2}{q^2}\right) \left(1 - \frac{q^2}{m_P^2}\right)^3 |F(q^2)|^2$$
$$= [\text{QED}(q^2)] \times |F(q^2)|^2$$

Single-pole:
$$F(q^2) = \frac{1}{1-q^2/\Lambda^2}$$
Multi-pole: $|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2+\gamma^2)}{(\Lambda^2-q^2)^2+\Lambda^2\gamma^2}$
Slope parameter: $b_{\eta\prime} = \frac{d|F(q^2)|}{dq^2}|_{q^2=0}$

PRD 109, 072001 (2024)

 $\eta/\eta' \rightarrow \gamma e^+ e^-$

♦ Unbinned maximum likelihood fit with $M(e^+e^-)$

- ✓ less systematic uncertainties
- ✓ better consideration of resolution

17

PRD 109, 072001 (2024)

 $\eta/\eta' \rightarrow \gamma e^+ e^-$

 \diamond Single-pole formula is sufficient for η

$$F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$$

 $\Lambda_{\eta} = (0.749 \pm 0.026 \pm 0.008) \text{ GeV}/c^2$

♦ Multi-pole formula for η'

$$\left|F(q^{2})\right|^{2} = \frac{\Lambda^{2}(\Lambda^{2} + \gamma^{2})}{(\Lambda^{2} - q^{2})^{2} + \Lambda^{2}\gamma^{2}}$$

 $\Lambda_{\eta\prime} = (0.802 \pm 0.007 \pm 0.008) \text{ GeV}/c^2$

 $\gamma_{\eta\prime} = (0.113 \pm 0.009 \pm 0.002) \text{ GeV}/c^2$

Benhou Xiang

20/07/2024

 $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

JHEP07, 135(2024)

♦ Decay amplitude

 $\overline{|\mathcal{A}_{\eta' \to \pi^+ \pi^- l^+ l^-}|}^2 (s_{\pi\pi}, s_{ll}, \theta_{\pi}, \theta_1, \phi) = \frac{e^2}{8k^2} |M(s_{\pi\pi}, s_{ll})|^2 \times \lambda \left(m_{\eta'}^2, s_{\pi\pi}, s_{ll}\right) \times \left[1 - \beta_1^2 \sin^2 \theta_1 \sin^2 \phi\right] s_{\pi\pi} \beta_{\pi}^2 \sin^2 \theta_{\pi}$ $\Leftrightarrow M(s_{\pi\pi}, s_{ll}) = \mathcal{M}_{mix} \times VMD(s_{\pi\pi}, s_{ll})$ contains the information of the decaying particle and the form factor.

Within the VMD model, TFF can be parameterized into three separate parts

$\eta' \to \pi^+\pi^- l^+ l^-$

JHEP07, 135(2024)

- ♦ By adjusting the values of the c_i -parameters, we can switch between the various VMD models.
 - I. Hidden gauge model: $c_1 c_2 = c_3 = 1$
 - II. Full VMD model: $c_1 c_2 = \frac{1}{3}, c_3 = 1$
 - III. Modified VMD: $c_1 c_2 \neq c_3$

- ↔ For $η' → π^+π^-e^+e^-$ decay
 - ✓ ρ^0 only can not describe data well.
 - $\checkmark \omega \rightarrow \pi^+ \pi^-$ decay is necessary!

$$\frac{m_{V,\pi}^2}{m_{V,\pi}^2 - s_{\pi\pi} - im_{V,\pi}\Gamma(s_{\pi\pi})} + \beta e^{i\theta} \frac{m_{\omega}^2}{m_{\omega}^2 - s_{\pi\pi} - im_{\omega}\Gamma(s_{\pi\pi})}$$

 $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

JHEP07, 135(2024)

• First time to study form factors with $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$:

$$b_{\eta\prime} = 1.30 \pm 0.19 \left(\text{GeV}/c^2 \right)^{-2}$$

Benhou Xiang

Summary

♦BESIII: a Light Meson Factory! \checkmark A unique place for light mesons ✓ Allow to study light meson decays with high precision \diamond Significant progresses achieved on η/η' decays $\checkmark \eta / \eta'$: Decay mechanisms, Form factors... ♦ More results are expected to come soon! $\checkmark \eta' \rightarrow \pi^+ \pi^- \eta, \eta' \rightarrow e^+ e^- \omega, \dots$

 \checkmark Rare decays

22

THANKS

Backup

 $\rightarrow \pi^0 \pi^0 n$

• Non-relativistic effective field theory

B. Kubis and S. P. Schneider, EPJC 62, 511 (2009)

• The statistical significance is found to be around 3.5σ .

Benhou Xiang

 $\eta/\eta' \to \gamma e^+ e^-$

 $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

TFF Results

$n' \rightarrow \pi^+ \pi^- e^+ e^-$	Model I	Model II	Model III
ηγκικου	$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$
$m_V ({ m MeV}/c^2)$	$954.3 \pm 82.5 \pm 36.4$	857.4 ± 74.3	787.5 ± 137.9
$m_{V,\pi}({ m MeV}/c^2)$	$765.3 \pm 1.1 \pm 20.2$	765.4 ± 1.1	764.8 ± 1.3
$m_{\omega}({ m MeV}/c^2)$	$778.7 \pm 1.3 \pm 17.3$	778.7 ± 1.3	778.7 ± 1.4
$eta(10^{-3})$	$8.5\pm1.4\pm0.7$	8.5 ± 1.4	8.1 ± 1.4
heta	$1.4\pm0.3\pm0.1$	1.4 ± 0.3	1.4 ± 0.4
$c_1 - c_2$	1	1/3	-0.03 ± 0.87
c_3	1	1	1.03 ± 0.02
$\chi^2/ndof(e^+e^-,\pi^+\pi^-)$	65.3/82.0, 44.5/65.0	66.1/82.0, 44.3/65.0	66.8/82.0, 42.2/65.0
$b_{\eta'} (\mathrm{GeV}/c^2)^{-2}$	$1.10 \pm 0.19 \pm 0.07$	1.36 ± 0.24	1.61 ± 0.56
$\pi' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	Model I	Model II	Model III
$\eta \rightarrow \pi^{-}\pi^{-}\mu^{-}\mu^{-}$	$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$
$m_V ({ m MeV}/c^2)$	$649.4 \pm 52.3 \pm 35.6$	601.6 ± 24.0	589.6 ± 24.2
$m_{V,\pi}({ m MeV}/c^2)$	$757.3 \pm 22.6 \pm 18.0$	765.4 ± 17.6	774.4 ± 40.7
$c_1 - c_2$	1	1/3	0.01 ± 0.42
c_3	1	1	0.98 ± 0.38
$\chi^2/ndof(\mu^+\mu^-,\pi^+\pi^-)$	36.1/34.0, 30.4/46.0	36.1/34.0, 30.4/46.0	37.4/35.0,29.9/46.0
$b_{\eta'} ({\rm GeV}/c^2)^{-2}$	$2.37 \pm 0.38 \pm 0.27$	2.76 ± 0.22	2.88 ± 0.24

\rightarrow Large statistical uncertainty of m_V and $c_1 - c_2$

• A test with
$$c_1 - c_2 = c_3$$
 gives

 $c_1 - c_2 = c_3 = 1.03 \pm 0.02$

 Provide a weighted average of the slope parameter for η' → π⁺π⁻e⁺e⁻ and η' → π⁺π⁻μ⁺μ⁻ based on Model I.

$$b_{\eta \prime} = 1.30 \pm 0.19 \left(\text{GeV}/c^2 \right)^{-2}$$