

Charmed mesons decays at BESIII

Bo Zheng University of South China (On behalf of BESIII Collaboration)

Outline

Charm meson physics

- BEPCII and BESIII experiment
- Highlight charmed meson results at BESIII
 - Leptonic and semi-leptonic decays
 - Hadronic decays and other
- Conclusion and prospect

Charm meson physics

Leptonic and semi-leptonic decay

Pure leptonic decay

Semi-leptonic decay

Ideal bridge to access the strong and weak effects between quarks ;

□ $|V_{cs}|$ and $|V_{cd}|$ →Test CKM matrix unitarity; □ Decay Constant $f_{D_{(s)}^+}$ and form factor f_+ →

Calibrate LQCD;

■ Branching fractions (BF) ratio → Test lepton flavor university.

- $\searrow \text{Hadronic decay}$ $\stackrel{W}{=} \stackrel{u}{=} \stackrel{u}{=} \stackrel{\pi^+}{=} \stackrel{c}{=} \stackrel{W}{=} \stackrel{K^-}{=} \stackrel{D^0}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{c}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{c}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{c}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{d}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{d}{=} \stackrel{u}{=} \stackrel{\pi^0, \eta, \eta'}{=} \stackrel{d}{=} \stackrel{u}{=} \stackrel{\pi^+}{=} \stackrel{u}{=} \stackrel{u}{=} \stackrel{d}{=} \stackrel{u}{=} \stackrel{\pi^+}{=} \stackrel{u}{=} \stackrel{u}{=$
- □ Amplitude analysis: Get information of $D \rightarrow VP$, PP, ...

Absolute BFs measurements: Test

theoretical calculations of these BFs and benefit the understanding of the quark SU(3) flavor symmetry and violation;

□Quantum correlated DD, CP ratio

measurements

3

BEPCII and BESIII experiment

➢ Bird View of BEPCII/BESIII

BESIII detector

- BEPC II: Large Crossing Angle, Double-ring
- ➤ CMS energy: 2 4.95 GeV
- > Luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

- > MDC: $\sigma_p/p=0.5\%@1$ GeV, $\sigma_{dE/dx}=6\%$;
- ➤ TOF: $\sigma_T = 68(110)$ ps for barrel(endcap); endcap TOF upgraded in 2015→ 60 ps;
- > EMC: $\sigma_E / E = 2.5\%$ (5%) ps for barrel(endcap)

Data samples and Analysis method

- Data samples
 - 2.93 fb⁻¹data $e^+e^- \to \psi(3770)$ at $\sqrt{s} = 3.773$ GeV
 - 7.33 fb⁻¹ $e^+e^- \rightarrow D_s^+D_s^{*-}$ data collected at $\sqrt{s} = 4.128 \sim 4.226$ GeV
- Analysis method
 - > Single tag(ST): reconstruct one $D_{(s)}$
 - Higher efficiency
 - Relatively high background
 - > Double tag(DT): reconstruct both $D_{(s)}$
 - Clear background
 - Kinematic constraint on the undetected particles
 - Systematic uncertainties on the tag side mostly canceled.

Highlight charmed meson results at BESIII

- Leptonic and semi-leptonic decay
 - $\checkmark D_s^{*+} \rightarrow e^+ \nu_e$ PRL 131, 141802 (2023)
 - $\checkmark D_s^+ \to \mu^+ \nu_{\mu}$ PRD 108, 112001 (2023)
 - $\checkmark D_s^+ \rightarrow \tau^+ \nu_{\tau}, \ \tau^+ \rightarrow \mu^+ \nu_{\mu} \overline{\nu}_{\tau}$ <u>PRD 108, 092014 (2023)</u>
 - $\checkmark D_s^+ \rightarrow \tau^+ \nu_{\tau}, \ \tau^+ \rightarrow \pi^+ \overline{\nu}_{\tau} \ \underline{\mathsf{JHEP09}(2023)124}$
 - $\checkmark D_s^+ \to \pi^+ \pi^- e^+ \nu_e$ PRL 132, 141901 (2024)
 - $\checkmark D_s^+ \rightarrow K^+ K^- \mu^+ \nu_\mu \quad \underline{\text{JHEP12(2023)072}}$
 - $\checkmark D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e \text{ and } D_s^+ \rightarrow \eta^{(\prime)} \mu^+ \nu_{\mu}$ <u>Phys. Rev. D 108, 092003 (2023)</u>

Phys. Rev. Lett. 132, 091802 (2024)

- Hadronic decay and other
- $\checkmark D_s^+ \rightarrow K_s^0 K^+ \pi^0$ PRL 129, 182001 (2022)
- $\checkmark D^+ \rightarrow K^0_S \pi^+ \pi^0 \pi^0$ <u>JHEP09(2023)077</u>
- $\checkmark D^{0(+)} \rightarrow K_S^0 X$ PRD 107, 112005 (2023)
- ✓ $D_{(s)}^{0(+)} \rightarrow \pi^{+}\pi^{-}X$ Phys. Rev. D 107, 032002 (2023) Phys. Rev. D 108, 032001 (2023)
- $\checkmark D_s^+$ hadronic decays <u>JHEP05(2024)335</u>
- $\checkmark D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0 \text{PRD 108, 032003 (2023)}$
- $\checkmark D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ PRD 107, 032009 (2023)
- $\checkmark D^+ \rightarrow K_S^0 a_0(980)^+$ PRL 132, 131903 (2024)
- $\checkmark D_s^+ \to h^+ h^0 e^+ e^- arXiv:2404.05973$

 $D_s^{*+} \rightarrow e^+ \nu_e$

Data sample: 7.33 fb⁻¹ @4.128 − 4.226 GeV
N_{Ds⁺⁺}
First measurement of BF and f_{Ds^+} $\sqrt{B(D_s^{*+} \rightarrow e^+ \nu_c)} = (2.1^{+1.2} + 0.2_{evst}) \times 10^{-5} (2.9\sigma)$

✓
$$B(D_s^{++} \to e^+ v_e) = (2.1^{+1.2}_{-0.9_{\text{stat}}} \pm 0.2_{\text{syst}}) \times 10^{-5} ($$

✓ $f_{D_s^{*+}} = (214^{+61}_{-46_{\text{stat}}} \pm 44_{\text{syst}}) \text{ MeV}$

Combine $\frac{f_{D_S^{*+}}}{f_{D_S^{+}}} = 1.12 \pm 0.01$ from LQCD calculation:

$$\succ \Gamma_{D_s^{*+}}^{\text{total}} = (122^{+70}_{-52} \pm 12) \text{ eV}$$

- Agree with LQCD prediction (70 ± 28) eV within $\pm 1\sigma$
- Indirectly constrains the upper limit on Γ^{total}_{Ds}⁺⁺ from MeV to sub-keV level. (PDG2022:Γ^{total}_{Ds}⁺⁺<1.09 MeV @90%C.L.)

 $D_s^+ \to \mu^+ \nu_\mu$

➢ Data sample: 7.33 fb⁻¹ @4.128 – 4.226 GeV
➢ $e^+e^- \rightarrow D_s^+D_s^{*-} \rightarrow \gamma(\pi^0)D_s^+D_s^-$ ➢ Analysis Method: DT method

PRD 108, 112001 (2023)

$$P = (0.5294 \pm 0.0108_{\text{stat}} + 0.0085_{\text{syst}})\%$$

$$P = (1.5294 \pm 0.0108_{\text{stat}} \pm 0.0085_{\text{syst}}) \text{ MeV}$$

$$P = (1.5294 \pm 0.010_{\text{stat}} \pm 0.009_{\text{syst}}) \text{ MeV}$$

$$P = (1.5294 \pm 0.010_{\text{stat}} \pm 0.009_{\text{syst}}) \text{ MeV}$$

- Precision of BF: 2.6%
- > Highest precision of $|V_{cs}|$ to date: ~1.4%

 $D_s^+ \rightarrow \tau^+ \nu_{ au}, \ \tau^+ \rightarrow \mu^+ \nu_{\mu} \overline{\nu}_{ au}$

 $D_s^+ \to \tau^+ \nu_{\tau}, \ \tau^+ \to \pi^+ \overline{\nu}_{\tau}$

> Data sample: 7.33 fb^{-1} @4.128 – 4.226 GeV

Analysis Method: Boosted decision tree(BDT) method

PRD 108, 092014 (2023)

 $N_{D_s^+ \to \tau^+ \nu_{\tau}} = 2411 \pm 75$

$$D_s^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$$

> Data sample: 7.33 fb⁻¹ @4.128 – 4.226 GeV

 $\succ \mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e, f_0(980) \to \pi^+\pi^-) = (1.72 \pm 0.13 \pm 0.10) \times 10^{-3}$

First form factor measurement with simple pole form and Flatte formula

PRL 132, 141901 (2024)

 $D_s^+ \to K^+ K^- \mu^+ \nu_\mu$

 $D_s^+ \rightarrow \eta^{(\prime)} e^+ \nu_e$ and $D_s^+ \rightarrow \eta^{(\prime)} \mu^+ \nu_\mu$

> Data sample: 7.33 fb^{-1} @4.128 – 4.226 GeV

Improve the BFs

 $\mathcal{B}(D_s^+ \to \eta e^+ \nu_e) = (2.255 \pm 0.039_{\text{stat}} + 0.051_{\text{syst}})\%$ $\mathcal{B}(D_s^+ \to \eta' e^+ \nu_e) = (0.810 \pm 0.038_{\text{stat}} \pm 0.024_{\text{syst}})\%$

Form factor:

- $F_{+}^{\eta}(0)|V_{cs}| = 0.4553 \pm 0.0071_{\text{stat.}} \pm 0.0061_{\text{syst.}}$
- > $f_{+}^{\eta'}(0)|V_{cs}| = 0.529 \pm 0.024_{\text{stat.}} \pm 0.008_{\text{syst.}}$

 $\succ \eta - \eta'$ mixing angle:

 $\succ \quad \cot^4 \phi_P \sim \frac{\Gamma(D_S^+ \to \eta' e^+ \nu_e) / \Gamma(D_S^+ \to \eta e^+ \nu_e)}{\Gamma(D^+ \to \eta' e^+ \nu_e) / \Gamma(D^+ \to \eta e^+ \nu_e)}$ \succ B(D⁺ → η^(')e⁺ν_e) quoted from PDG. $\blacktriangleright \phi_P = (40.0 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}})$ $\Delta\Gamma/\Delta q^2 (ns^{-1}GeV^2c^4)$ $+ \eta'_{\eta\pi^+\pi^-} e^+ v_e$ $+ \eta'_{\eta\sigma^0} e^+ v_e$ -Simple pole Modified 2 Par. z series 20 1.0 $f_{+}(q^{2})$ 0.6 0.4¹ 0.2 0.4 0.6 0.8 0.5 1.0 1.5 $q^2 (GeV^2/c^4)$ Phys. Rev. D 108, 092003 (2023)

- ➤ Data sample: 7.33 fb⁻¹ @4.128 4.226 GeV
- ➤ Improved BFs:
 - $\mathcal{B}(D_s^+ \to \eta \mu^+ \nu_\mu) = (2.235 \pm 0.051_{\text{stat}} + 0.052_{\text{syst}})\%$ $\mathcal{B}(D_s^+ \to \eta' \mu^+ \nu_\mu) = (0.801 \pm 0.055_{\text{stat}} \pm 0.028_{\text{syst}})\%$

➢ Form factors:

> $f^{\eta}_{+}(0)|V_{cs}| = 0.452 \pm 0.010_{\text{stat.}} \pm 0.007_{\text{syst.}}$

$$f_{+}^{\eta'}(0)|V_{cs}| = 0.504 \pm 0.037_{\text{stat.}} \pm 0.012_{\text{syst.}}$$

Phys. Rev. Lett. 132, 091802 (2024)

13

$|V_{cs}| \& |f_{D_s}|$

- > The world average values of $|V_{cs}|$ and $|f_{D_s}|$ are currently dominated by the measurement results from the BESIII experiment.
- → According to G_F , $m_{D_S^+}$, m_{τ} , m_{μ} from PDG2022, input $|V_{cs}|$, $|f_{D_S^+}|$.

Amplitude analysis and BF measurement $D^+ \rightarrow K_S^0 \pi^+ \pi^0 \pi^0$

JHEP09(2023)077

➢ Data sample: 2.93 fb⁻¹ @3.773 GeV

 $\succ \mathcal{B}\left(D^+ \to K^0_S a_1(1260)^+ (\to \rho^+ \pi^0)\right) =$

 $(8.66 \pm 1.04_{\text{stat.}} \pm 1.39_{\text{syst.}}) \times 10^{-3}$

Dominate intermediate processes:

$$\mathcal{B}\left(D^+ \to K_S^0 a_1(1260)^+ (\to \rho^+ \pi^0)\right) = \\ \left(8.66 \pm 1.04_{\text{stat.}} \pm 1.39_{\text{syst.}}\right) \times 10^{-3} \\ \mathcal{B}(D^+ \to \overline{K}^{*0} \rho^+) = \left(9.70 \pm 0.81_{\text{stat}} \pm 0.53_{\text{syst}}\right) \times 10^{-3}$$

✓ Projections of the nominal ft onto invariant mass distributions. The labels $\pi_{1,2}^0$ mean that two distributions involving a single π^0 have been combined.

BFs measurement of $D^{0(+)} \rightarrow K_s^0 X$

BFs measurement of $D_{(s)}^{0(+)} \rightarrow \pi^+ \pi^- X$

$D^+ \to \pi^+ \pi^+ \pi^- X \qquad Phys. \text{ Rev. D 107, 032002 (202)}$			(2023)	
i	$N_{ m prod}$	$d\mathcal{B}_{ m sig}$	$d\mathcal{B}_{\mathrm{sig}}^{\mathrm{corr}}$ (%)	
1	1541.3 ± 89.9	0.28 ± 0.02	0.28 ± 0.02	
2	9349.1 ± 206.0	1.71 ± 0.04	1.70 ± 0.04	
3	14235.8 ± 271.8	2.60 ± 0.05	2.66 ± 0.05	
4	22130.5 ± 295.0	4.04 ± 0.05	4.08 ± 0.05	
5	24638.2 ± 264.9	4.50 ± 0.05	4.51 ± 0.05	
6	16850.4 ± 207.4	3.07 ± 0.04	3.14 ± 0.04	
7	4228.6 ± 127.5	0.77 ± 0.02	0.80 ± 0.02	
8	1730.9 ± 113.7	0.32 ± 0.02	0.31 ± 0.02	
9	676.1 ± 69.6	0.12 ± 0.01	0.11 ± 0.01	
Total	95381.0 ± 598.9	•••	17.60 ± 0.11	
cay mode	This work	(%)	Exclusive decay	Difference
			(%)	(%)
$ \pi^+\pi^+\pi^-X$	17.60 ± 0.11	± 0.22	16.05 ± 0.47	1.55
$ \pi^+\pi^+\pi^-X$	15.25 ± 0.09	$\theta \pm 0.18$	14.74 ± 0.53	0.51
$ \pi^+\pi^+\pi^-X$	$X = 32.81 \pm 0.35_{stat}$	$\pm 0.63_{\rm syst}$	24.7 ± 1.5	8.11
Rev. D 108,	<u>032001 (2023)</u>			

 1747.1 ± 111.1 0.22 ± 0.01 9683.3 ± 245.1 1.19 ± 0.03 17890.3 ± 349.6 2.20 ± 0.04 27671.6 ± 366.3 3.41 ± 0.05 33224.6 ± 340.2 4.09 ± 0.04 20383.9 ± 251.5 2.51 ± 0.03 5772.7 ± 155.4 0.71 ± 0.02 0.33 ± 0.01 2661.8 ± 97.8 2032.0 ± 81.1 0.25 ± 0.01 2803.0 ± 80.2 0.35 ± 0.01 123870.2 ± 744.7 15.25 ± 0.09

3

5

8

9

10

Total

The measured total and partial BFs of $D_{(S)}^{0(+)} \rightarrow \pi^+\pi^+\pi^-X$ offer important inputs to constrain the systematic uncertainties in future LHCb measurements on $R(D^*)$ with much larger data samples.

D_s^+ hadronic decays

→ Data sample: 7.33 fb^{-1} @4.128 – 4.226 GeV

Analysis method: DT method

JHEP05(2024)335

Mode	${\cal B}~(\%)$	PDG \mathcal{B} (%)
$D_s^+ \to K_S^0 K^+$	$1.502 \pm 0.012 \pm 0.009$	1.453 ± 0.035
$D_s^+ \to K^+ K^- \pi^+$	$5.49 \pm 0.04 \pm 0.07$	5.37 ± 0.10
$D_s^+ \to K_S^0 K^+ \pi^0$	$1.47 \pm 0.02 \pm 0.02$	1.47 ± 0.07
$D_s^+ \to K_S^0 K_S^0 \pi^+$	$0.73 \pm 0.01 \pm 0.01$	0.71 ± 0.04
$D_s^+ \to K^+ K^- \pi^+ \pi^0$	$5.50 \pm 0.05 \pm 0.11$	5.50 ± 0.24
$D_s^+ \to K^0_S K^+ \pi^+ \pi^-$	$0.93 \pm 0.02 \pm 0.01$	0.95 ± 0.08
$D_s^+ \to K_S^0 K^- \pi^+ \pi^+$	$1.56 \pm 0.02 \pm 0.02$	1.53 ± 0.08
$D_s^+ \to \pi^+ \pi^+ \pi^-$	$1.09 \pm 0.01 \pm 0.01$	1.08 ± 0.04
$D_s^+ \to \pi^+ \eta$	$1.69 \pm 0.02 \pm 0.02$	1.67 ± 0.09
$D_s^+ \to \pi^+ \pi^0 \eta$	$9.10 \pm 0.09 \pm 0.15$	9.5 ± 0.5
$D_s^+ \to \pi^+ \pi^+ \pi^- \eta$	$3.08 \pm 0.06 \pm 0.05$	3.12 ± 0.16
$D_s^+ \to \pi^+ \eta'$	$3.95 \pm 0.04 \pm 0.07$	3.94 ± 0.25
$D_s^+ \to \pi^+ \pi^0 \eta'$	$6.17 \pm 0.12 \pm 0.14$	6.08 ± 0.29
$D_s^+ \to K_S^0 \pi^+ \pi^0$	$0.51 \pm 0.02 \pm 0.01$	0.54 ± 0.03
$D_s^+ \to K^+ \pi^+ \pi^-$	$0.620 \pm 0.009 \pm 0.006$	0.620 ± 0.019

Agreement with the world-average values, but typically with much improved precision

18

CP-even fraction measurements

- ✓ The R⁺ values (left) for the CP-odd tag modes and the R⁻ values (right) for the CP-even tag modes. The horizontal error bars show the total uncertainty for each measurement. The yellow bands show the fitted values with uncertainties.
- Data sample: 2.93 fb⁻¹ @3.773 GeV $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ $F_+ = 0.235 \pm 0.010 \pm 0.002$

PRD 107, 032009 (2023)

- ✓ The effective branching fraction (BF) of *D* → $K^+K^-\pi^+\pi^-$ measured against CP-odd (top), *D* → $\pi^+\pi^-\pi^0$ and CP-even (bottom) tags. The black dotted lines indicate the values expected from the fit.
- ➤ Data sample: 2.93 fb⁻¹ @3.773 GeV
- $\succ D^0 \rightarrow K^+ K^- \pi^+ \pi^-$
- $\succ F_+ = 0.730 \pm 0.037 \pm 0.021$
- First model-independent measurement

Observation of $D^+ \rightarrow K_S^0 a_0(980)^+$

PRD 105, 033006(2022)

 $\Box \text{ Topological amplitudes of various } D \rightarrow SP \text{ decays}$

	Amplitude
$f_0\pi^+$	$\frac{1}{\sqrt{2}}\alpha V_{cd}^*V_{ud}(T+C'+A+A')+\beta V_{cs}^*V_{us}C'$
$f_0 K^+$	$V_{cd}^* V_{us}[\frac{1}{\sqrt{2}}\alpha(T+A')+\beta A]$
$a_0^+ ar{K}^0$	$V_{cs}^* V_{ud}(T'+C)$
$a_0^{ar{0}}\pi^+$	$\frac{1}{\sqrt{2}}V_{cd}^*V_{ud}(-T-C'-A+A')$
$\sigma \pi^+$	$\frac{1}{\sqrt{2}}\beta V_{cd}^* V_{ud}(T+C'+A+A') - \alpha V_{cs}^* V_{us}C'$
$ar{\kappa}^0\pi^+$	$V_{cs}^* V_{ud}(T+C')$
$ar{\kappa}^0 K^+$	$V_{cs}^*V_{us}T + V_{cd}^*V_{ud}A$
$f_0 \pi^0$	$\frac{1}{2} \alpha V_{cd}^* V_{ud}(-C+C'-E-E') + \frac{1}{\sqrt{2}} \beta V_{cs}^* V_{us}C'$
$f_0 \bar{K}^0$	$V_{cs}^* V_{ud} [\frac{1}{\sqrt{2}} \alpha(C+E) + \beta E']$
$a_0^+\pi^-$	$V_{cd}^* V_{ud}(T'+E)$
$a_0^-\pi^+$	$V_{cd}^{*}V_{ud}(T+E')$
$a_0^+ K^-$	$V_{cs}^* V_{ud}(T'+E)$
$a_0^0 K^0$	$V_{cs}^* V_{ud}(C-E)/\sqrt{2}$
$a_0^- K^+$	$V_{cd}^*V_{us}(T+E')$
$\sigma \pi^0$	$\frac{1}{2}V_{cd}^{*}V_{ud}\beta(-C+C'-E-E') - \frac{1}{\sqrt{2}}\alpha V_{cs}^{*}V_{us}C'$

- > Help to study the properties of the $a_0(980)$;
- ➤ Understand the inconsistency between the theory and experiment of the $D \rightarrow a_0(980)P$ process.

Observation of $D^+ \rightarrow K_S^0 a_0(980)^+$

Search for the rare decays $D_s^+ \rightarrow h^+ h^0 e^+ e^-$

- ➢ Data sample: 7.33 fb⁻¹ @4.128-4.226 GeV
- Analysis method: ST method
- ➢ Reconstructed by:

 $D_{s}^{+}
ightarrow \pi^{+}\pi^{0}e^{+}e^{-}, \quad D_{s}^{+}
ightarrow K^{+}\pi^{0}e^{+}e^{-},$ $D_{s}^{+}
ightarrow K_{s}^{0}\pi^{+}e^{+}e^{-}$

Decay	$N_{ m sig}$	ϵ (%)	$\mathcal{B}~(imes 10^{-5})$
$D_s^+ \to \pi^+ \phi, \phi \to e^+ e^-$	$38.2^{+7.8}_{-6.8}$	25.1	$1.17^{+0.23}_{-0.21}\pm0.03$
$D_s^+ \to \rho^+ \phi, \phi \to e^+ e^-$	$37.8^{+10.3}_{-9.6}$	12.1	$2.44^{+0.67}_{-0.62} \pm 0.16$

7.8
$$\sigma$$
 for $D_s^+ \to \pi^+ \phi$, $\phi \to e^+ e^-$ improved by
a factor of three;
4.4 σ for $D_s^+ \to \rho^+ \phi$, $\phi \to e^+ e^-$ First
evidence.

Accepted by PRL

arXiv:2404.05973

Decay	$N_{ m sig}$	$\epsilon~(\%)$	$\mathcal{B}~(imes 10^{-5})$
$D_s^+ \to \pi^+ \pi^0 e^+ e^-$		7.4	< 7.0
$D_s^+ \to K^+ \pi^0 e^+ e^-$		5.3	< 7.1
$D_s^+ \to K_S^0 \pi^+ e^+ e^-$	•••	6.7	< 8.1

150

χ²/d.o.f: 25.8/3

γ²/d.o.f: 36.2/35

x2/d.o.f: 36.7/36

Events / (3.5 MeV/*c*²) 00 00

Events / (3.5 MeV/c²)

20

 $D_s^+ \rightarrow \pi^+ \pi^0 e^+ e^-$

 $D_s^+ \rightarrow K^+ \pi^0 e^+ e^-$

 $D_s^+ \rightarrow K_S^0 \pi^+ e^+ e^-$

1.95 M(D,⁺) (GeV/*c*²)

+ data

--- background

Conclusion and prospect

- Charm mesons are important for CKM matrix elements, calibrating LQCD, understanding non-perturbative QCD, and searching for new physics beyond the Standard Model ...
- > BESIII reports many important results on charm mesons decay:
 - ✓ Precise measurements of $D_s^+ \rightarrow \tau^+ \nu_{\tau}$;
 - \checkmark More inclusive decay results are published.

> Prospect:

20 fb⁻¹ data at \sqrt{s} =3.773 GeV has been collected at BESIII of 2024;

New measurements with larger data samples are expected.

