ICHEP 2024 PRAGUE

ichep2024.org

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

Charmed Baryons Decays at BESIII

Cong GENG

Sun Yat-sen University

(On behalf of BESIII Collaboration)

20-Jul, ICHEP2024

Outline

- Charmed Baryons
- BESIII experiment
- Cabibbo favored and suppressed decays
- Inclusive decays
- Decays of excited charmed baryons
- List of the released results
- Prospect at BESIII

Charmed Baryons

Decays of Charmed Baryons

 C_1 : factorization component C_2, E_1, E_2, E_3 : non-factorization component 20-Jul, ICHEP2024

4

BEPCII and **BESIII**

MDC: spatial reso. 115μm dE/dx reso: 5% EMC: energy reso.: 2.4% BTOF: time reso.: 70 ps ETOF: time reso.: 60 ps

Threshold effect at BESIII

Data sets collected in 2020 and 2021

- ✤ 12 energy points between 4.61 ~ 4.95 GeV
 ✤ ~5.6 fb⁻¹ collision data in total
- * about 1 million $\Lambda_c^+ \overline{\Lambda}_c^-$ pair productions

20-Jul, ICHEP2024

 $\Lambda_c^+ \to \Xi^0 K^+, \Xi^0 \to \Lambda \pi^0, \Lambda \to p \pi^-$

Only receives the non-factorization contribution

PRL 132, 031801 (2024)

 Λ_c^+ rest frame

CM frame

Two individual helicity $H_{\frac{1}{2},\frac{1}{2}}$ and $H_{\frac{1}{2},-\frac{1}{2}}$ 2'2

$$\begin{aligned} & \stackrel{+}{c} \rightarrow \boldsymbol{\Xi}^{0} \boldsymbol{K}^{+} \\ & \alpha^{2} + \beta^{2} + \gamma^{2} = 1 \\ & \alpha = \frac{2Re(\boldsymbol{S}^{*}\boldsymbol{P})}{|\boldsymbol{S}|^{2} + |\boldsymbol{P}|^{2}} \end{aligned} \qquad \boldsymbol{\beta} = \sqrt{1 - \alpha^{2}} \mathrm{sin}\Delta \end{aligned}$$

20-Jul, ICHEP2024

Λ

-1

Phase difference

PWA in hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

JHEP 12 (2022) 033

$$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$$

$$\Lambda_c^+ \to \Sigma(1385)^+ \pi^0$$

$$\Lambda_c^+ \to \Sigma(1385)^0 \pi^+$$

PWA in hadronic decay $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$

		Theoretical c	alculation
PWA framework is established !	$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	4.0 [14,
Parvon document can be probed l	$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4
baryon decupiet can be probed :	$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4
$D_{\alpha\alpha\gamma}$	$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14
Decay asymmetry $\Lambda_c \rightarrow \Lambda p$			45

differs from prediction

$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.070
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91\substack{+0.4\\-0.2}$	$^{45}_{10}$ [17]	-0.917 ± 0.089
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91^{+0.4}_{-0.2}$	$^{45}_{10}$ [17]	-0.79 ± 0.11

This work

Various predictions for Cabibbo suppressed decays

H.-Y. Cheng, et al., PRD 97, 074028 (2018)

Before 2020

	Sharma et al. [24]	Uppal et al. [42]	Chen <i>et al.</i> [43]	Lu et al. [25]	Geng et al. [28]	This work	Experiment [7,19]
$\overline{\Lambda_c^+ o p \pi^0}$	0.2	0.1–0.2	0.11-0.36	0.48	0.57 ± 0.15	0.08	<0.27 ?
$\Lambda_c^+ \to p\eta$	$0.2^{a}(1.7)^{b}$	0.3			1.24 ± 0.41	1.28	1.24 ± 0.29
$\Lambda_c^+ \to p \eta'$	0.4–0.6	0.04-0.2			$1.22\substack{+1.43 \\ -0.87}$?
$\Lambda_c^+ \to n\pi^+$	0.4	0.8-0.9	0.10-0.21	0.97	1.13 ± 0.29	0.27	8
$\Lambda_c^+ \to \Lambda K^+$	1.4	1.2	0.18-0.39		0.46 ± 0.09	1.06	0.61 ± 0.12
$\Lambda_c^+\to \Sigma^0 K^+$	0.4–0.6	0.2–0.8			0.40 ± 0.08	0.72	0.52 ± 0.08
$\Lambda_c^+ \to \Sigma^+ K^0$	0.9–1.2	0.4–0.8			0.80 ± 0.16	1.44	8

 $∧ Λ_c^+ → pη$: looks consistent between exp. and theo. $∧ The significant discrepancy in the channel Λ_c^+ → pπ^0$ ∧ Interference between factorization and non-factorization?

Double tag strategy is adopted; 9 tag modes used. *2D fit to extract the signal yield: ST $\overline{\Lambda}_c^-$ vs. signal $\Lambda_c^+ \to p\pi^0$ Significance 3.7 σ , branching fraction (1.56^{+0.72}_{-0.58} ± 0.20)×10⁻⁴ 20-Jul, ICHEP2024

 $\Lambda_c^+
ightarrow n\pi^+$ and $\Lambda_c^+
ightarrow p\pi^0$

$\mathcal{B}(\Lambda_c^+ ightarrow n\pi^+) imes 10^{-4}$	$egin{array}{l} {\cal B}ig({\it \Lambda}^+_c o p \pi^0 ig) imes 10^{-4} \end{array}$	${f R}={\cal B}(\Lambda_c^+ ightarrow n\pi^+)/{\cal B}ig(\Lambda_c^+ ightarrow p\pi^0ig)$	Reference	models	
$\begin{array}{c} 6.6\pm1.2\\ \pm0.4 \end{array}$	$\begin{array}{c} \textbf{1.56}^{+0.72}_{-0.58} \ \pm \\ \textbf{0.20} \end{array}$	$3.2^{+2.2}_{-1.2}$		Lastest results from BESIII	$\times 10^{-4}$)
$6.6 \pm 1.2 \pm 0.4$ (BESIII)	< 0.8×10 ⁻⁴ (BELLE)	> 7. 2 @90% C. L.		Result from BELLE	·mπ ⁺) (
11.3±2.9	5.7±1.5	2	PRD 97, 073006 (2018)	SU(3)f with only H(6)	Λ_{c}^{+}
6. 1 ± 2. 0	1.3±0.7	4.7	PLB 790, 225 (2019)	SU(3)f with both H(6) and H(15- bar)	B(
8 or 9	1 or 2	4.5 or 8.0	PRD 49, 3417 (1994)	constituent quark model	
2.66	0.75	3.5	PRD 97, 074028 (2018)	a dynamical calculation based on pole model and current-algebra	
7.7 ± 2.0	$0.8^{+0.9}_{-0.8}$	9.6	JHEP 02 (2020) 165	topological-diagram approach	
8.5 ± 2.0	1.2 ± 1.2	7.1 ± 7.3	PLB 794 (2019) 19-28	SU(3) flavor symmetry with O($\overline{15}$)	
3.5 ± 1.1	44.5 ± 8.5	0.08	JHEP 03(2022) 143		
$\begin{array}{c} 6.47\substack{+1.33\\-1.55}\\ 8.15\substack{+0.69\\-0.67}\end{array}$	$\begin{array}{ccc} 0.51^{+0.59}_{-0.61} & 0.16 \pm \\ 0.09 \end{array}$	$\begin{array}{c} 12.69\substack{+15.4\\-15.5}\\ 50.94\substack{+29.0\\-29.0}\end{array}$	JHEP 02 (2023) 235	SU(3) broken SU(3) respected	

 Likely different from Belle
 consistent with SU(3) prediction with representation H(6) and H(15)

Double tag strategy

★ $\Sigma^- \rightarrow n\pi^-$ (almost 100% decay rate), and *n* is considered to be missing.

*2D fit to extract the signal yield: Σ^- and n signals

 $\mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^- K^+ \pi^+) = (3.8 \pm 1.2 \pm 0.2) \times 10^{-4}$

Consistent with SU(3) prediction (3.3 ± 2.3)×10⁻⁴
 Help constrain the parameters and improve the understanding of decay mechanism.

Measurement of inclusive $\overline{\Lambda}_c^- \rightarrow \overline{n} + X$

		000	
Γ(<i>n</i> anything)/Γ _{total}	PDG-2	022	Г ₇₈ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
$0.50 \pm 0.08 \pm 0.14$	¹ CRAWFORD 92	CLEO	e^+e^- 10.5 GeV
¹ This CRAWFORD 92 value dent, but account is taken o	includes neutrons from Λ of this in the systematic e	decay. T rror.	he value is model depen-

- The rates of Λ_c^+ decays to proton and neutron ?
- Measure the inclusive decay $\overline{\Lambda}_c^- \rightarrow \overline{n} + X$
- Utilize the annihilation effect to extract the signal

PPD 108, L031101 (2023)

Precision: 5% (previous 32%) Asymmetry between proton and neutron in Λ_c^+ decays

Decays of $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+$

PDG-2022

Strong transition is dominant.

♦ Relative measurements was performed w.r.t mode $\Lambda_c^+ \pi^+ \pi^-$

♦ Isospin relation is assumed: $\Lambda_c^+ \pi^+ \pi^- : \Lambda_c^+ \pi^0 \pi^0 = 2:1$

$\Lambda_{c}(2595)^{+}$

 $I(J^P) = 0(\frac{1}{2}^-)$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P = 1/2^+$ for the $\Sigma_c(2455)$.

 $\begin{array}{l} {\rm Mass} \ m = 2592.25 \pm 0.28 \ {\rm MeV} \\ m - m_{\Lambda_c^+} = 305.79 \pm 0.24 \ {\rm MeV} \\ {\rm Full \ width} \ \Gamma = 2.6 \pm 0.6 \ {\rm MeV} \end{array}$

 $\Lambda_{C}^{+}\pi\pi$ and its submode $\Sigma_{C}(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_{C}^{+} having this mass; and the submode seems to dominate.

A _C (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\Lambda_{c}^{+}\pi^{+}\pi^{-}$	[s] —	117	
$\Sigma_{c}(2455)^{++}\pi^{-}$	$24 \pm 7 \%$	†	
$\Sigma_{c}(2455)^{0}\pi^{+}$	$24 \pm 7 \%$	†	
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117	
Car Daniala Lintana fan Ordan			

See Particle Listings for 2 decay modes that have been seen / not seen 20-Jul, ICHEP2024 See Particle Listings for 2 decay modes that have been seen / not seen.

Λ_c(2625)⁺

 $I(J^P) = 0(\frac{3}{2}^-)$

 J^P has not been measured; $\frac{3}{2}^-$ is the quark-model prediction. Mass $m=2628.11\pm0.19$ MeV (S = 1.1) $m-m_{\Lambda_c^+}=341.65\pm0.13$ MeV (S = 1.1) Full width Γ < 0.97 MeV, CL = 90%

 $\Lambda_c^+ \pi \pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

A _C (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	pprox 67%		184
$\Sigma_{c}(2455)^{++}\pi^{-}$	<5	90%	102
$\Sigma_c(2455)^0 \pi^+$	<5	90%	102
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	large		184

Measurements of strong transition

PRD 109, 112007 (2024)

2.64

 $\frac{2.62}{M_{recoil}^{sig}(\Lambda_{c}^{+})} \frac{2.64}{[GeV/\textbf{C}^{2}]}$

2.66

2.66

(d)

2.68

(f)

2.68 **20**

 $\sqrt{s} = 4.950 \text{ GeV}$

2.62

4.0 MeV/c² 90

60

20

 $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$

Select one $\Lambda_c^+ \rightarrow \overline{\Lambda}_c^*$ in the other side ♦ Require additional $\pi^+\pi^-$ pair \bigstar another $\overline{\Lambda}_c^-$ as a missing particle and not reconstructed (under E-P conservation)

Results of Branching fractions

Hai-Yang Cheng and Chun-Khiang Chua, PRD 92, 074014 (2015)

	This result	Assumption
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$	$50.7 \pm 5.0 \pm 4.9$	67%
$\Lambda_c(2595)^+ \to \Lambda_c^+ \pi^+ \pi^-$	<81% (at 90% CL)	67%

- ♦ Due to low-momentum pions in decays of $\Lambda_c(2595)^+$, the $\Lambda_c(2595)^+ → \Lambda_c^+ \pi^+ \pi^$ is not observed.
- ★Likely the threshold effect also exist in decays of Λ_c(2625)⁺. B(Λ_c(2625)⁺ → Λ⁺_cπ⁺π⁻) = B(Λ_c(2625)⁺ → Λ⁺_cπ⁰π⁰), if considering the strong decays is 100%.

Released results

Cabibbo suppressed (hadronic)		Cabibbo favored (hadronic)		Others	
$\Lambda_c^+ \to n\pi^+$	PRL 128, 142001 (2022)	$\Lambda_c^+ \to \Xi^0 K^+$	PRL 132, 031801 (2024)	$e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$	PRL 131, 191901 (2023)
$\Lambda_c^+ o p\eta, p\omega$	JHEP 11 (2023) 137	$\Lambda_c^+ \to n K_s \pi^+ \pi^0$	PRD 109, 053005 (2024)	$\Lambda_c^+ \to e^+ + X$	PRD 107, 052005 (2023)
$\Lambda_c^+ \to p\eta'$	PRD 106, 072002 (2022)	$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	JHEP 12 (2022) 033	$\bar{\Lambda}_c^- \to \bar{n} + X$	PRD 108, L031101 (2023)
$\Lambda_c^+ \to p \pi^0$	PRD 109, L091101 (2024)			$\Lambda_c^+ \to \Sigma^+ + \gamma$	PRD 107, 052002 (2023)
$\Lambda_c^+ \to \Lambda \mathrm{K}^+$	PRD 106, L111101 (2022)	Semileptonic		$\Lambda_c^+ \to p + \gamma'$	PRD 106, 072008 (2022)
$\Lambda_c^+ \to \Sigma^0 \mathrm{K}^+, \Sigma^+ \mathrm{K}_\mathrm{S}$	PRD 106, 052003 (2022)	$\Lambda_c^+ \to \Lambda e^+ \nu_e$	PRL 129, 231803 (2022)		
$\Lambda_c^+ \to \Sigma^- \mathrm{K}^+ \pi^+$	PRD 109, L071103 (2024)	$\Lambda_c^+ \to \Lambda \mu^+ \nu_e$	PRD 108, 031105 (2023)	$e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^{*-}$	PRD 109, L071104 (2024)
$\Lambda_c^+ \to n K^+ \pi^0 \text{ (DCS)}$	PRD 109, 052001 (2024)	$\Lambda_c^+ \to p K^- e^+ \nu_e$	PRD 106, 112010 (2022)	$\Lambda_c^{*+} \to \Lambda_c^+ \pi^+ \pi^-$	PRD 109, 112007 (2024)
$\Lambda_c^+ \rightarrow n K_S K^+, n K_S \pi^+$	arXiv: 2311.17131	$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$	PLB 843 (2023) 137993		
$ \begin{array}{c} \Lambda_c^+ \to \Lambda \mathrm{K}^+ \pi^0, \\ \Lambda \mathrm{K}^+ \pi^+ \pi^- \end{array} $	PRD 109, 032003 (2024)	$\Lambda_c \rightarrow \rho \Lambda_S e^{-\nu_e}$			

>10 analyses are under review inside Collaboration

Prospect at BESIII

Unique data samples at the thresholds for charmed baryons.
Hadron physics: spectroscopy, (transition-)form-factors, fragmentation ...
Precise test of SM: weak decays, CKM, CP violation, rare/forbidden decays ...

Summary

♣BESIII has collected dedicated data for the charmed baryons between $\sqrt{s} = 4.6 \sim 4.95$ GeV

*Various decay modes of Λ_c^+ have been investigated.

- The excited charmed baryons $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+$ can be probed at BESIII. Decay rates of strong transition are measured with a model independent approach for the first time.
- In 2024, the BEPC-II will be upgraded again. Larger data sets covering the charmed baryons will be collected, and more interesting results will be produced.

Thank you!