

Measurements of Charmonium Decays at BESIII

Jipeng Wang (Shandong University)

wangjipeng@sdu.edu.cn

on behalf of the **BESIII** Collaboration

42th International Conference on High Energy Physics (ICHEP 2024)

Jul 20, 2024, Prague, Czech Republic

ICHEP 2024 | PRAGUE

Outline

- Introduction
- BESIII experiment and data sets
- The study of $\psi(3686)$ decay

 $\checkmark \psi(3686) \rightarrow \Omega^{-}K^{+}\overline{\Xi}^{0} + c.c.$ $\checkmark \psi(3686) \rightarrow \gamma \eta_{c}(2S) \text{ with } \eta_{c}(2S) \rightarrow K\overline{K}\pi$

- The study of singlet $\eta_c(2S)$ decay

 $\checkmark \eta_c(2S) \rightarrow \pi^+\pi^-\eta_c/\pi^+\pi^-K_sK^\pm\pi^\mp$

• The study of χ_{cJ} decay

 $\checkmark \chi_{cJ} \rightarrow 3(K^+K^-)$

• The nature of $\chi_{c1}(3872), 2^{3}P_{1}$ or not

 $\checkmark \chi_{c1}(3872) \rightarrow \pi^+ \pi^- \chi_{c1}$

 $\checkmark \chi_{c1}(3872) \rightarrow \pi^+\pi^-\eta$

• Summary Jipeng Wang(SDU) This presentation is not an encyclopaedic review of all the charmonium decays at BESIII

ICHEP 2024, Prague, Czech Republic

BESIII experiment

- τ -*c* region 1.84 < \sqrt{s} < 4.95 GeV
- Peak luminosity $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ @ $\sqrt{s} = 3.77 \text{ GeV}$
- Clean background environment

BESIII experiment

 10×10^{9} 2.7 x 10⁹ 20.3 fb⁻¹ J/ψ ψ(2S) ψ(3770) RPC:8 RPC: 9 $\psi(2S)$ Electro Magnetic J/ψ layers layers Calorimeter ▲ Mark-I 6 ▼ Mark-I + LGW Mark-II 5 SC PLUTO \boldsymbol{R} 🔅 Crystal Ball Solenoid~ * BES KEDR osle Barrel 3 <u>cosθ</u> ToF 2 Endcap cos0=0.93 0.90 ToF 3 3.5 SC ~ MDO Quadrupole ~ 17 fb⁻¹ XYZ studies ~4,0 fb⁻¹ XYZ studies 3.8 GeV ≤ √s ≤ 4.6 GeV Js ≥ 4.6 GeV IP

- Precise center-of-mass energies ($\sigma_E < 2 \text{ MeV}$)
- $2.7 \times 10^9 \psi(3686)$ events for charmonium decay study
- High luminosity energy scan (~500 pb⁻¹/10 MeV)
- **22** fb^{-1} (4 < \sqrt{s} < 5 GeV) for XYZ study

Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

BES

 $\psi(3686) \rightarrow \Omega^- K^+ \overline{\Xi}{}^0 + c.c.$

JHEP 04 (2024) 013

- 6 *s* or *s* quark in the final state!
- . 3-body decays study of charmoniums is difficult for theory
- 2. Available experimental results are limited now [5]
- 3. Provide important information for strong interaction
- 4. Help understand the dynamics of $\psi(3686)$ decays

Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

8

[5] Prog. Theor. Exp. Phys. 2022 (2022)083C01.

$\psi(3686) \rightarrow \gamma \eta_c(2S)$ with $\eta_c(2S) \rightarrow K \overline{K} \pi_{PRD 109, 032004(2024)}$

	From $\mathcal{E}(\eta_c(2S) \rightarrow K\overline{K}\pi) = (1.86^{+0.68} - 0.49)\%[6]$ Improved precision					
e ⁻		Mass (MeV/ c^2)	Width (MeV)	$\mathcal{B}(\psi(3686) \to \gamma \eta_c(2S))(\times 1)$	0^{-4}) $\Gamma(\psi(3686) \rightarrow \gamma \eta_c(2S))$ (keV)	
	This work	$3637.8 \pm 0.8 \pm 0.2$	$10.5 \pm 1.7 \pm 3.5$	$5.2 \pm 0.3 \pm 0.5^{+1.9}_{-1.4}$	$0.15^{+0.06}_{-0.04}$	
	BESIII (2012)	$3637.6 \pm 2.9 \pm 1.6$	$16.9 \pm 6.4 \pm 4.8$	$6.8 \pm 1.1 \pm 4.5$	0.20 ± 0.14	
	world average	3037.0 ± 1.2	$11.3_{-2.9}^{+3.2}$	7 ± 5	0.21 ± 0.15	

Comparison with theoretical expectations...

	Mass (MeV/ c^2)	$\mathcal{B}(\psi(3686) \rightarrow \gamma \eta_c(2S))(\times 10^{-4})$	$\Gamma(\psi(3686) \rightarrow \gamma \eta_c(2S)) \text{ (keV)}$
NR model [7]	3630	7.14 ± 0.19	0.21
GI model [7]	3623	5.80 ± 0.16	0.17
Meson loop correction[8]	N/A	2.72 ± 1.00	0.08 ± 0.03
Light-front quark model [9]	3637	3.9	0.11
Other models [10]	N/A	0.6–36.0	N/A

1. Favor all model within 2σ

 γ_{M1}

 $\eta_c(2S)$

 e^+

2. $Br(\eta_c(2S) \rightarrow K\overline{K}\pi)$ limit the precision and more precise result is needed! Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

[6] Chin. Phys. C 46 071001 (2022)
[7] Phys. Rev. D 72,054026 (2005)
[8] Phys. Lett. B 670, 55 (2008)
[9] Eur. Phys. J. A 48, 66 (2012).
[10] arXiv:0909.2812.

$\eta_c(2S) \rightarrow \pi^+ \pi^- \eta_c / \pi^+ \pi^- K_s K^{\pm} \pi^+$

PRD 109, 072017 (2024)

1. Assuming same linear dependence q^2 (squared mass of pion pair) between $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ and $\eta_c(2S) \rightarrow \pi^+ \pi^- \eta_c$, Refs.[11] estimate $B(\psi(2S) \rightarrow \gamma \eta_c(2S)) \times B(\eta_c(2S) \rightarrow$ $\pi^+\pi^-\eta_c) \sim 3.5 \times 10^{-5}$

2. Additional suppression for $Br(\eta_c(2S) \rightarrow \pi^+\pi^-\eta_c)$ from stronger chromo-magnetic interaction may exist [12].

3. Experient result is important to test theories and $B(\psi(2S) \rightarrow \gamma \eta_c(2S)) \times$ $B(\eta_c(2S) \rightarrow \pi^+\pi^-\eta_c)$ is determined to be 2.21×10^{-5} @ 90% C.L..

- Our result favor these two theories.
- New decay channel of $\eta_c(2S)$ hepl us understand 2. it better.

NB The sum of $Br(\eta_c(2S))$ is ~ 6%!

Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

For the first time

$\mathcal{E}(\eta_c(2S) \rightarrow \pi^+\pi^-K_S^0K^\pm\pi^\mp) = (1.33 \pm 0.11 \pm 0.4 \pm 0.95) \%$

[11] Mod. Phys. Lett. A 17, 1533 (2002) 11 [12] Phys. Rev. D 74, 054022 (2006)

 $\chi_{cI} \rightarrow 3(K^+K^-)$

For the first time

 $(10.7 \pm 1.8 \pm 1.1) \times 10^{-6}$

 $(4.2 \pm 0.9 \pm 0.5) \times 10^{-6}$

 $\checkmark Br(\chi_{c0} \rightarrow 3(K^+K^-)) =$

 $\checkmark Br(\chi_{c1} \rightarrow 3(K^+K^-)) =$

 $\checkmark Br(\chi_{c2} \rightarrow 3(K^+K^-)) =$

6 s or \overline{s} quark in the final state!

- 1. Discrepancies between theory and experiment $^{(7.2 \pm 1.1 \pm 0.8) \times 10^{-6}}$ are observed [13-15].
- 2. Exclusive χ_{cJ} hadronic decays are desirable.
- 3. Deepen the understanding about the decay mechanisms of χ_{cl} .

[13] Eur. Phys. J. A 23,129 (2005).
[14] Phys. G 38, 035007 (2011).
[15] Eur. Phy. J. C 14, 643 (2000). 12

Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

 $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\chi_{c1}$

PRD 109, L071101 (2024)

 $\chi_{c1}(3872) \rightarrow \pi^0 \chi_{c1}$ have been observed at BESIII [16]

Favoring the non-conventional charmonium [18] 2.

Jipeng Wang(SDU)

ICHEP 2024, Prague, Czech Republic

[16] Phys. Rev. Lett. 122, 202001 (2019). [17] Phys. Rev. D 77, 014013 (2008). 13 [18] Phys. Rev. D 78, 094019 (2008).

 $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\eta$

PRD 109, L011102 (2024)

[19] Phys. Rev. D 106, 074015 (2022).

ICHEP 2024, Prague, Czech Republic

(our result <1%).

Summary

- BESIII has achieved significant progress in the study of charmonium(-like) decay
 - * First observation of $\psi(2S) \rightarrow \Omega^- K^+ \overline{\Xi}{}^0 + c.c$
 - * Update the precision of $\psi(2S) \rightarrow \gamma \eta_c(2S)$ with $\eta_c(2S) \rightarrow K\overline{K}\pi$
 - * First observation of $\eta_c(2S) \rightarrow \pi^+ \pi^- K_s K^{\pm} \pi^{\mp}$ and give the upper limit of $\eta_c(2S) \rightarrow \pi^+ \pi^- \eta_c$
 - * First observation of $\chi_{cJ} \rightarrow 3(K^+K^-)$
 - * Give the upper limits of $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\chi_{c1}$ and $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\eta$
- The largest datasets of $c\overline{c}$ vector states collected by BESIII provide the power to study the $\psi(2S)$, $\eta_c(2S)$, $\chi_{cJ}(1P)$ states and their decays with unprecedented precision.
- Also datasets above the $D\overline{D}$ threshold can shed new light on charmonium-like state decays and hint at possible connections between XYZ states and the conventional charmonium.

Thanks for your attention!

Back up

Charmoniumlike $\chi_{c1}(3872)$

 $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\chi_{c1}$

PRD 109, L071101 (2024)

 $\chi_{c1}(3872) \rightarrow \pi^+\pi^-\chi_{c1}$

Theoretical prediction: $\chi_{c1}(2P)$: **No** $\chi_{c1}(3872)$ **signal!** [9] $\overline{D}^{0}D^{*0}$ bound state: **Favor!** $\left(\frac{\operatorname{Br}[X(3872) \rightarrow \chi_{c1}\pi^{+}\pi^{-}]}{\operatorname{Br}[X(3872) \rightarrow \chi_{c1}\pi^{0}]}\right)_{LO} \approx \mathcal{O}(10^{-3}) \cdot [10]$

Pionic transitions of the spin-2 partner of X(3872) to χ_{cJ} [11]
 Tentative estimates of B(X(3872) → π⁰π⁰χ_{c1}) and B(X(3872) → π⁺π⁻χ_{c1})[12]
 Predicting isovector charmonium-like states from X(3872) properties [13]

[9] S. Dubynskiy and M. B. Voloshin, Phys. Rev. D 77, 014013 (2008).
[10]S. Fleming and T. Mehen, Phys. Rev. D 78, 094019 (2008).
[11] arxiv:2406.01874
[12] arXiv:2405.09228 20
[13] arXiv:2404.11215 20

Summary & Prospect

- The BEPCII-U scheduled in the coming summer of this year
- Luminosity of BEPCII-U increased by a factor of 3 @ $\sqrt{s} = 4.7$ GeV enabling efficient collection of XYZ data; \sqrt{s} extends to 5.6 GeV; Commissioning in 2025
- Stay tuned for more exciting results from BESIII! BESIII is still Charming :)