

Lepton flavour (universality) violation studies at CMS

Chiara Rovelli (INFN Roma) On behalf of the CMS Collaboration

2024, July 19th ICHEP 2024 - Prague

Lepton flavour (universality) violation

Lepton Flavour Violation (LFV)

No symmetry enforcing lepton flavour conservation in SM

- Neutrino oscillations exist: evidence of LFV in neutral leptons
- Charged LFV happens in loop diagrams with v mixing, but it is strongly suppressed in the SM (rate ~ 10⁻⁵⁵) https://link.springer.com/article/10.1140/epjc/s10052-020-8059-7
- SM extensions predict a much larger BR which can be tested in current experiments, up to 10⁻¹⁰-10⁻⁸

1.9x10-8 @ 90% CL

Lepton Flavour Universality Violation (LFUV)

- SM: 3 generations of leptons with the same gauge couplings (W, Z)
- NP could enhance couplings to 3rd generation leptons

LFV and LFUV decays represent a diversified ground for BSM searches

LFV/LFUV as probe for New Physics

The CMS experiment can access a large set of BSM scenarios

Many results available and many analyses ongoing

Huge effort in the past years to make LF(U)V measurements possible also in the B-physics sector in CMS

• Developments at trigger and reconstruction level

In this talk I concentrate on heavy mesons and leptons <u>BPH-21-005</u>: search for $\tau \rightarrow 3\mu$ <u>BPH-22-005</u>: measurement of the RK ratio <u>BPH-22-012</u>: measurement of the R(J/ ψ) ratio in the τ leptonic channel <u>BPH-23-001</u>: measurement of the R(J/ ψ) ratio in the τ hadronic channel **NEW**

Many other results available as well in the Higgs, Top and Exotic sector and presented in this conference

Search for $\tau \rightarrow 3\mu$ decay: overview

PLB 853 (2024) 138633

Experimentally clean channel

Two sources of tau leptons exploited:

- Heavy flavour decays: $\sim 10^{11} \tau_s$ /fb⁻¹ ; $\sim 70\%$ D, 30% B
- W bosons decays: $\sim 10^7 \tau_s$ /fb⁻¹

Signature: charge-one three muons events from a displaced vertex

Analysis strategy: bump search in the 3 muons invariant mass

Events categorization to boost sensitivity:

based on invariant mass resolution, production mode, year

Main backgrounds:

- 2 real muons + 1 fake
 - e.g. $B \rightarrow D + \mu + X$; $D \rightarrow \mu + v + Kaon$; Kaon fakes muon
- 3 real muons, two from a resonance ($\omega, \phi \dots$)
- Combinatorial background

Background suppression mostly using BDT discriminators

+ dedicated cut-based selections

Control channel: $Ds \rightarrow \phi \pi \rightarrow \mu \mu \pi$

• Also used as a normalization channel for the HF analysis

Search for $\tau \rightarrow 3\mu$ decay: results

Analysis based on 2017+2018 data

No hint of signal found, upper limits set on the $\tau \rightarrow 3\mu$ branching ratio

Observed (expected) upper limit: BR($\tau \rightarrow 3\mu, HF$) < 3.4 (3.6) x10⁻⁸ @90% CL BR($\tau \rightarrow 3\mu, W$) < 8.0 (5.6) x10⁻⁸ @90% CL

Results are statistically combined with a previous CMS analysis based on 2016 data CMS JHEP 01 (2021) 163

 $BR(\tau \rightarrow 3\mu) < 2.9 (2.4) \times 10^{-8} @90\% CL$

 Best LHC limit (ATLAS and LHCb: results on Run1 data)

Current best world limit by Bellell (2024): BR($\tau \rightarrow 3\mu$) < 1.9 x10⁻⁸ @90% CL

LFUV

Two main transitions investigated in the Heavy Flavour sector

 $b \rightarrow sll$

- $R(Hs) = \frac{\mathfrak{B}(Hb \to Hs\mu\mu)}{\mathfrak{B}(Hb \to Hsee)}$
- Small BR (loop level)
- Precise predictions
- Neutrino-less

Most recent results on RK and RK* in good agreement with SM

 $b \rightarrow c l \nu_l$

$$R(H_c) = \frac{\mathfrak{B}(Hb \to Hc\tau\nu\tau)}{\mathfrak{B}(Hb \to Hc\mu\nu\mu)}$$

- Large BR (tree level)
- Sensitive to theory and syst. uncertainties
- Neutrinos in the final state

LFUV

Two main transitions investigated in the Heavy Flavour sector

 $b \rightarrow sll$

- $R(Hs) = \frac{\mathfrak{B}(Hb \to Hs\mu\mu)}{\mathfrak{B}(Hb \to Hsee)}$
- Small BR (loop level)
- Precise predictions
- Neutrino-less

$$R_{K} = \frac{BF(B \rightarrow \mu \mu K)}{BF(B \rightarrow e e K)}$$

Theoretically clean; SM prediction = 1.00 \pm 0.01

Most recent results on RK and RK* in good agreement with SM

RK: overview

2024 Rep. Prog. Phys. 87 077802 Just published!

$$R_{K} = \frac{BF(B \rightarrow \mu \mu K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow \mu \mu)} / \frac{BF(B \rightarrow e e K)}{BF(B \rightarrow J/\psi K, J/\psi \rightarrow e e)}$$

Experimentally cleaner; systematics cancellation

Measurement overview:

- Innovative technique to collect data: 2018 B-parking <u>https://arxiv.org/abs/2403.16134</u>
- Fit to Kll invariant mass in 3 q² regions

- Dedicated *low p_T electron* reconstruction / ID
- Main backgrounds: combinatorial, partially reconstructed B^{0/+} → K*(892)⁰ll, any other B decay (J/ψX or sequential), J/ψ leakage Background suppression mostly using BDT discriminators

RK, results

In the same paper (see backup) $B \rightarrow K \mu \mu$ inclusive and differential BR in q^2

2024 Rep. Prog. Phys. 87 077802

RK value extracted with a profile likelihood using RK⁻¹

 $R(K) = 0.78^{+0.46}_{-0.23} \text{ (stat)}^{+0.09}_{-0.05} \text{ (syst)}$

- Precision dominated by small statistics in the electron channel
- Main systematics: background description and trigger turnon
- Compatible within 1σ with SM

LFUV

Two main transitions investigated in the Heavy Flavour sector

$$R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$$

SM: 0.2582 ± 0.0038 PRL 125, 222003 (2018)

Not much studied because Bc can not be produced at B-factories

Both leptonic and hadronic decays of the τ lepton could be exploited

$b \rightarrow c l v_l$

$$P(H_c) = \frac{\mathfrak{B}(Hb \to Hc\tau\nu\tau)}{\mathfrak{B}(Hb \to Hc\mu\nu\mu)}$$

- Large BR (tree level)
- Sensitive to theory and syst. uncertainties
- Neutrinos in the final state

R(J/ ψ), leptonic τ

CMS-PAS-BPH-22-012

2018 data, 59.7/fb

τ decay : τ → μντνμ

Final state signature: 3μ + neutrinos (3 or 1) for numerator and denominator

Same reconstruction and simultaneous fit

Separate $1\nu/3\nu$ using q²=(p^{Bc}- p^{J/ ψ})²

• Collinear approximation to estimate the Bc 4-momentum: $p^{Bc} = \frac{m^{PDG}(Bc)}{m(3\mu)} p^{3\mu}$

Main backgrounds:

- Muon fakes: J/ψ + misidentified hadron (mostly $K \rightarrow \mu \nu$)
- Hb bkg: combinatorial J/ ψ + μ
- Bc bkg:
 - Feeddowns ($c\bar{c}$ to J/ ψ)
 - Other J/ ψ + charmed hadrons (mostly $B_c^+ \rightarrow D^{(*)}s J/\psi$)
- Combinatorial $\mu\mu$

Discriminating variables:

- q²
- Lxy $/\sigma(Lxy)$ of J/ψ vtx \rightarrow to discriminate Hb from fakes
- $m(3\mu) \rightarrow to isolate Hb bkg$
- 3D IP significance b/w 3rd muon and J/ψ vertex \rightarrow to discriminate τ signal from fakes

CMS-PAS-BPH-22-012

R(J/ ψ), leptonic τ

Complex fit, performed in 7 different categories, for 2 bins of $3^{rd} \mu$ isolation / each cat

<u>Results:</u>

$$0.17^{+0.18}_{-0.17} (\text{stat.})^{+0.21}_{-0.22} (\text{syst.})^{+0.19}_{-0.18} (\text{theo.})$$

Compatible

- within 0.3 σ with SM prediction
- within 1.3σ with LHCb result 0.71 ± 0.17 (stat) ± 0.18 (syst)
- Theory syst: Bc form factors
- Main experimental systematic uncertainty related to fakes

q²12

R(J/ ψ), hadronic τ

CMS-PAS-BPH-23-001

<u>Run2 data, 138/fb</u>

Denominator from BPH-22-012

Numerator: τ decay is $\tau \rightarrow \pi \pi \pi$

• Dedicated low $p_T \tau$ reconstruction and identification

Main backgrounds:

 $Hb \rightarrow J/\psi + X$

- Hb = non Bc hadrons
- Dominant background by far

 ${
m Bc}
ightarrow J/\psi {
m D}^{(*)}{
m s}$

Other Bc decays,

• E.g. $Bc \rightarrow J/\psi D^{+(*)}$, $Bc \rightarrow J/\psi D^+ KO^{(*)}$, $Bc \rightarrow J/\psi D^{0(*)} K^+$

Background suppression using a BDT discriminator:

- Variables: τ flight length sign., particles multiplicity, vertices quality, isolation, ID...
- Main goal: maximize signal vs Hb separation

$R(J/\psi)$ hadronic: results

3 prong τ decays likely produce an intermediate $\rho(770)$ resonance , then $\rho \rightarrow \pi\pi$

- Pions ordered in p_T
- 2 opposite charge combinations used to construct ho_1 and ho_2
- Unrolled ho_1 vs ho_2 distribution used as discriminating variable

Simultaneous fit to signal region and Hb background control region

Results:

 $R(J/\psi)_{had} = 1.04^{+0.50}_{-0.44}$

Combining the three years, sensitivity driven by 2018 Systematic uncertainties dominate

Full combination performed with BPH-22-012 R(J/ ψ) _{lept+had} = 0.49 \pm 0.25 (syst) \pm 0.09 (stat)

 ρ_1

CMS-PAS-BPH-23-001

$R(J/\psi)$ hadronic: results

3 prong τ decays likely produce an intermediate $\rho(770)$ resonance , then $\rho \rightarrow \pi\pi$

- Pions ordered in p_T
- 2 opposite charge combinations used to construct ho_1 and ho_2
- Unrolled ho_1 vs ho_2 distribution used as discriminating variable

Simultaneous fit to signal region and Hb background control region

CMS-PAS-BPH-23-001

 ho_1

Conclusions

LF(U)V is a very exciting field to look for new physics

Run2 results on $\tau \rightarrow 3\mu$ did not show an enhancement of the BR beyond 10⁻⁸

- Competitive limits set
- Analysis statistical limited, close to be sensitive to the most optimistic BSM models

A new result on $R(J/\psi)$ with hadronic τ decays has been presented for the first time

Run2 RK and $R(J/\psi)$ results prove the robustness and adaptability of the CMS detector trigger, software and analysis and the ability of a general-purpose experiment to contribute to these measurements

Stay tuned for new results from Run-2 and Run-3! (https://arxiv.org/abs/2403.16134)

Backup

Search for $\tau \rightarrow 3\mu$ decay at CMS

Experimentally clean channel

- fully reconstructed final state
- no irreducible SM backgrounds
- precise muon reconstruction @CMS

Two main sources of tau leptons in CMS: heavy flavour decays and W bosons

HF decays: ~10^{11} $\tau_{\rm s}$ /fb⁻¹ ; ~70% D, 30% B

- Abundant
- Low p_T and high $|\eta|$ leptons
- Less efficient trigger and selection
- More sensitive to fake πs , Ks

W decays: ~10⁷ $\tau_{\rm s}$ /fb⁻¹

- Less abundant
 - Higher p_T and more central leptons
 - W kinematics provides additional handles

Search for $\tau \rightarrow 3\mu$ decay: world status

Year	Collab.	Process	Data	Expected [*]	Observed [*]
<u>2010</u>	Belle	ee ightarrow au au	782 fb ⁻¹	-	2.1
<u>2010</u>	BaBar	$ee \rightarrow \tau \tau$	468 fb ⁻¹	4.0	3.3
<u>2014</u>	LHCb	$D/B \to \tau X$	3.0 fb ⁻¹ (pp 7-8 TeV)	5.0	4.6
<u>2016</u>	ATLAS	$W \rightarrow \tau \nu$	20.3 fb ⁻¹ (pp 8 TeV)	39	38
<u>2023</u>	CMS	$D/B \rightarrow \tau X$ and $W \rightarrow \tau v$	131 fb ⁻¹ (pp 13 TeV)	2.4	2.9
<u>2024</u>	Belle II	$ee \rightarrow \tau \tau$	424 fb-1	- 10 -	1.9

[*] × 10⁻⁸@ 90% C.L.

2018 B-parking

RK: yields & likelihood scan

RK: electrons

Misidentification rate after eleID : 10⁻³ -10⁻⁴ per electron

Possible peaking background : $B^+ \rightarrow K^+ h_1 h_2$, dominated by $B^+ \rightarrow K^+ \pi \pi$ (BR~10⁻⁵; D⁰ π^+ contribution subtracted)

Checked on $B^+ \rightarrow D^0 (\rightarrow K^+ \pi^-) \pi^+$ and $B^+ \rightarrow K^+ \pi^- \pi^+$ MC:

<0.3 events in both electron analysis categories (i.e. <0.2% and 6% wrt signal yield)

$B \rightarrow K \mu \mu BR$

Differential measurement:

- Measurement done normalizing to the J/ψ control region
- Simultaneous fit to all q² bins, linear parameterization of the mass dependence on q²
- Data generally lower than predictions up to high q²

Inclusive BR in $1.1 < q^2 < 6.0 \text{ GeV}^2$:

- Eff x acc ~costant in this bin
- Result consistent with world average, precision comparable to LHCb
- Theory prediction higher than experimental results

<i>q</i> ² range	Signal yield	Branching fraction
$[GeV^2]$		$[10^{-8}]$
0.1-0.98	260 ± 20	2.91 ± 0.24
1.1-2.0	197 ± 19	1.93 ± 0.20
2.0-3.0	306 ± 23	3.06 ± 0.25
3.0-4.0	260 ± 21	2.54 ± 0.23
4.0 - 5.0	251 ± 23	2.47 ± 0.24
5.0-6.0	264 ± 27	2.53 ± 0.27
6.0-7.0	267 ± 21	2.50 ± 0.23
7.0-8.0	256 ± 23	2.34 ± 0.25
11.0-11.8	207 ± 19	1.62 ± 0.18
11.8-12.5	172 ± 16	1.26 ± 0.14
14.82-16.0	272 ± 20	1.83 ± 0.17
16.0–17.0	246 ± 17	1.57 ± 0.15
17.0-18.0	317 ± 19	2.11 ± 0.16
18.0–19.24	242 ± 19	1.74 ± 0.15
19.24–22.9	158 ± 19	2.02 ± 0.30

Source	$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)[1.1, 6.0] \text{GeV}^2$		
	$[10^{-8}]$		
Measurement	12.42 ± 0.68		
EOS	18.9 ± 1.3		
FLAVIO	17.1 ± 2.7		
SUPERISO	16.5 ± 3.4		
HEPFIT	19.8 ± 7.3		

R(J/ ψ), leptonic τ : variables

$R(J/\psi)$, leptonic τ : fakes

- Four regions defined based on $3^{rd} \mu$ isolation (ISO) and ID •
- Measurement of iso fakerate (fr_{ISO}) in !ID: •
 - Fit in multiple dimensions using NN classifiers
 - Outputs interpreted as event-by-event weights
 - Application of fr_{ISO} weights to events in B to get fakes in A

fr_{ISO} weighted B region: Fakes = data-MC

A region: use fakes shape found in B

25

R(J/ ψ), leptonic τ : fakes validation

$R(J/\psi)$, leptonic τ : Bc form factors

Contribution	Uncertainty type	Rel. uncertainty	$\Delta \mathrm{R}(\mathrm{J}/\psi) \cdot 10^{-2}$
B_c^+ form factors	10 shapes	_	18.2
fakes stat. non closure	bin-by-bin shapes	_	11.3
fakes background	2 shapes	—	4.2
fakes background	norm.	13.0%(+5% HM cat.)	2.5
finite MC size	bin-by-bin shapes	_	5.3
IP3D/ σ_{IP3D} , $L_{xy}/\sigma_{L_{xy}}$ corr.	2 shapes	_	4.4
muon ID, iso, trigger	norm.	6.6%	2.5
J/ ψ comb. norm.	norm.	20.0%	1.3
B ⁺ _c bkg. BRs	norm.	10.0 - 38.0%	0.7
$H_{\rm b}$ sample composition	norm.	10.0% for each H_{b}^{i}	0.5
Other	norm.	_	< 0.1

MC generated with Kiselev FF and reweighted to use the BGL parameterization with Hammer

Both for μ and τ signal

All 11 parameters variations considered as shape systematics

R(J/ ψ), leptonic τ : likelihood scan

Low pT au

In CMS there is a dedicated algorithm for identifying hadronic τs (Hadron-Plus-Strip) seeded by a jet with con ΔR =0.4. In the low p_T regime, πs from the τ decay are spread over a large $\eta - \phi$ region and are not confined in a single jet

Dedicated algorithm in 3 steps:

- PV choice
- Pre-filtering: suppress charged π s not originating from the τ
 - Compatibility with PV, J/ ψ and J/ ψ vertex
- Triplet filtering: τ vtx probability, mass, pT, flight length significance
- Final selection

$R(J/\psi)$ hadronic: Hb background

- 4 regions defined: low-purity (LP), sidebands (SB), gap and signal region (SR)
- The Hb $\rightarrow J/\psi$ + X background in the SB is constructed as difference between data and MC
- Extrapolation factors based on the simulation are used to move from SB to SR.
- Several validations performed given the relevance of this estimate for the measurement
 - Extrapolation from SB to GAP
 - Extrapolation from SB to SR with inverted $\boldsymbol{\tau}$ selection
- Good agreement overall, differences \rightarrow systematics
- Normalization uncertainty: 30% (from validations)
- Shape uncertainties:
 - Variations of extrapolation factors (bin by bin)
 - Stat uncertainty from SB data
- All uncorrelated between years