Radiative b-hadron decays at LHCb

Aniol Lobo Salvia, on behalf of the LHCb collaboration 42nd International Conference on High Energy Physics Prague 18-24 July 2024

UNIVERSITAT DE BARCELONA

Introduction: radiative decays of beauty hadrons

- SM: proceed at leading order through b → sγ one-loop electromagnetic penguin transitions
- BSM models predict **additional one-loop contributions** that can introduce sizeable effects on the dynamics of the transition
- We use Weak Effective Field Theory to encode possible NP effects in the Wilson coefficients $\mathcal{H}_{eff} \propto V_{ts}^* V_{tb} (C_7 O_7 + C_7' O_7')$
- The LHC era has brought observations of new radiative b-hadron decay modes and precise measurements of $W = V^*(V^*) = q(d)$
 - asymmetries $\mathcal{CP} \rightarrow Im(C_7)$
 - branching fractions $\mathscr{B}(A \to BC) \to (|C_7|^2 + |C_7'|^2)$
 - helicity structure $\gamma_{(L/R)} \rightarrow |C'_7/C_7|$

Contents

• New results in radiative b-hadron decays at LHCb since ICHEP 2022

Search of $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ – Introduction

JHEP07(2024)101

• Very rare decay, SM predictions • $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^- \gamma)_{low q^2} = (8.3 \pm 1.3) \times 10^{-9}$

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{high q^2} = (8.9 \pm 1.0) \times 10^{-10}$$

- Previously probed at LHCb as a partially reconstructed background of $B_s^0 \rightarrow \mu\mu$, Phys.Rev.Lett.128.041801 but limited to high dimuon mass squared (q^2) region
- Sensitive to a wide set of operators dominant in the different q^2 regions

JHEP11(2017)184

PhysRevD.105.012010

vector and axial-vector interactions

Search of $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ – Strategy

JHEP07(2024)101

- Search preformed in regions of q^2
- Normalized to $B_s^0 \to J/\psi (\to \mu^+ \mu^-) \eta (\to \gamma \gamma)$ decay
- Uses $B_s^0 \to \phi(\to K^+K^-)\gamma$ to control of data-simulation discrepancies
- Cut based preselection
- Two Multilayer Perceptron classifiers
- Consistent with background-only hypothesis

Aniol Lobo

Radiative b-hadron decays at LHCb

Search of $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ – Results

 Limits are set using the CLs method, yielding at 90% CL:

- $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{Bin I} < 3.6 \times 10^{-8}$
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{Bin\,II} < 6.5 \times 10^{-8}$
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{Bin\,III} < 3.4 \times 10^{-8}$
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{Bin \, I, \phi \, veto} < 2.9 \times 10^{-8}$
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{Combined} < 2.5 \times 10^{-8}$

Amplitude analysis $B_s^0 \rightarrow K^+ K^- \gamma$ – Introduction

arXiv 2406.00235, submited to JHEP

- Amplitude analysis of the $B_s^0 \to K^+ K^- \gamma$ decay to study the hadronic structure
- First observation of the radiative B_s^0 decay to the orbitally excited mesons
- Phase space fully described by $(m_{KK}, \cos \theta_{KK})$
- Radiative scalar beauty meson decay \rightarrow free of the S-wave amplitude
- Interferences of odd- and even-spin resonances cancel out
- Detector asymmetries cancelled out by folding over θ_{KK} $\cos \theta_{KK} \rightarrow |\cos \theta_{KK}|$

State	J^{PC}
$\phi(1020)$	1
$f_2'(1525)$	2^{++}
$\phi(1680)$	1
$f_2(1270)$	2^{++}
$\phi_3(1850)$	3
$f_2(2010)$	2^{++}
$(KK)_{NR}$	1

Amplitude analysis $B_s^0 \rightarrow K^+ K^- \gamma$ – Strategy

arXiv 2406.00235, submited to JHEP

• Fit to m_{B_s} and sPlot technique for background subtraction

- Parametrization of acceptance in $arepsilon(m_{KK}, heta_{KK})$
 - Including the effect of anti-charm veto $m_{K\gamma} > 2000 MeV/c$
- Parametrization of mis-ID backgrounds
- Fit of the amplitudes using isobar amplitude model approach

Amplitude analysis $B_s^0 \rightarrow K^+ K^- \gamma - Fit$

arXiv 2406.00235, submited to JHEP

- MisID backgrounds included in the fit $\mathcal{P}(m_{KK}, \theta_{KK}) = \mathcal{N}_S \mathcal{P}_S + \sum_{BKG} \mathcal{N}_{BKG} \mathcal{P}_{BKG}$
- Amplitude model

 $\underbrace{\underbrace{Signal \, PDF}_{\mathcal{F}_{S}(m_{KK}, \theta_{KK})}_{Isobar \, KK \, model}}_{Selection \, acceptance} \cdot \underbrace{\underbrace{Isobar \, KK \, model}_{Isobar \, KK \, model}}_{\left[\sum_{R} c_{R} \cdot \mathcal{F}_{R} \mathcal{F}_{B} \mathcal{B} \mathcal{W}_{R}(m_{KK}; \mu_{R}, \Gamma_{R}) \cdot d_{10}^{J_{R}}(\theta_{KK})\right]^{2}}$

- 20 free parameters
 - Yields
 - Isobar factors + phases
 - Mass and width of $\phi(1020), f_2'(1525)$
 - Radius parameter of $\phi(1020)$

Amplitude analysis $B_s^0 \rightarrow K^+ K^- \gamma$ – Results

arXiv 2406.00235, submited to JHEP

- Fit fractions, relative branching fractions and overall tensor contribution reported for the preferred fit solution
- Mass and width of $\phi(1020), f_2^{\,\prime}(1525$) in agreement with world average
- Radius parameter of $\phi(1020)$

State	Fit fraction (%)	Relative fit fraction (%)	Phase (deg.)
$\phi(1020)$	$70.3 \ ^{+0.9}_{-1.0} \ ^{+1.0}_{-1.2}$	100	0 (fixed)
$f_2(1270)$	$0.8\pm 0.3 {}^{+0.2}_{-0.3}$	$1.2 \ {}^{+0.4}_{-0.3} \ {}^{+0.3}_{-0.5}$	$-55 {}^{+13}_{-17} {}^{+25}_{-17}$
$f_2'(1525)$	$12.1 \ {}^{+0.6}_{-0.5} \ {}^{+0.9}_{-0.4}$	$17.3 \ {}^{+0.8}_{-0.7} \ {}^{+1.3}_{-0.5}$	0 (fixed)
$\phi(1680)$	$3.8 \ ^{+0.6}_{-0.5} \ \pm 0.7$	$5.4 \ {}^{+0.9}_{-0.6} \ {}^{+1.0}_{-1.1}$	$137 {}^{+5}_{-6} \pm 8$
$\phi_3(1850)$	$0.3 \ {}^{+0.2}_{-0.1} \ {}^{+0.2}_{-0.1}$	$0.4 {}^{+0.3}_{-0.2} {}^{+0.3}_{-0.2}$	$- 61 {}^{+16}_{-13} {}^{+13}_{-12}$
$f_2(2010)$	$0.4 \pm 0.2 {}^{+0.2}_{-0.1}$	$0.6 {}^{+0.3}_{-0.2} {}^{+0.3}_{-0.2}$	$43 \begin{array}{c} +30 \\ -24 \end{array} \begin{array}{c} +52 \\ -59 \end{array}$
$(KK)_{NR}$	$0.5 {}^{+0.4}_{-0.2} {}^{+0.3}_{-0.2}$	$0.6 {}^{+0.5}_{-0.3} {}^{+0.5}_{-0.3}$	$165 {}^{+6}_{-16} \pm 9$

 $\frac{\mathcal{B}(B_s^0 \to f_2(1270)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.25^{+0.09}_{-0.07} \text{ (stat.)}^{+0.06}_{-0.10} \text{ (syst.)} \pm 0.03 \text{ (BR)},$

 $\frac{\mathcal{B}(B_s^0 \to f_2'(1525)\gamma)}{\mathcal{B}(B_s^0 \to \phi(1020)\gamma)} = 0.194^{+0.009}_{-0.008} \text{ (stat.)}^{+0.014}_{-0.005} \text{ (syst.)} \pm 0.005 \text{ (BR)}$

 $\frac{\mathcal{B}(B^0_s \to \phi(1680)\gamma)}{\mathcal{B}(B^0_s \to \phi(1020)\gamma)} \times \mathcal{B}(\phi(1680) \to K^+K^-) = 0.026^{+0.004}_{-0.003} \text{ (stat.)} \pm 0.005 \text{ (syst.)}.$

overall tensor contribution

$$\mathcal{F}_{\{f_2\}} = 16.8 \pm 0.5 \,(\text{stat}) \pm 0.7 \,(\text{syst})\%$$

Amplitude analysis $\Lambda_b^0 \rightarrow pK^-\gamma$ – Introduction

- Amplitude analysis of $\Lambda_h^0 \to p K^- \gamma$ to study the hadronic structure
- First observation of this decay
- Helpful for the interpretation of a variety of measurements in the $\Lambda^0_b \to p K^- l^+ l^-$ spectrum
 - LFU, CP violation, Branching fractions
- Useful input for potential measurements of photon polarization
- Important feedback for low energy QCD theoretical description

Resonance	J^P
$\Lambda(1405)$	$1/2^{-}$
$\Lambda(1520)$	$3/2^{-}$
A(1600)	$1/2^{+}$
A(1670)	$1/2^{-}$
A(1690)	$3/2^{-}$
A(1800)	$1/2^{-}$
$\Lambda(1810)$	$1/2^{+}$
A(1820)	$5/2^+$
A(1830)	$5/2^{-}$
A(1890)	$3/2^{+}$
$\Lambda(2100)$	$7/2^{-}$
$\Lambda(2110)$	$5/2^+$
A(2350)	$9/2^+$

Amplitude analysis $\Lambda_b^0 \rightarrow pK^-\gamma$ – Method

JHEP 06 (2024) 098

- Fit to $m_{pK\gamma}$ and sPlot technique for background subtraction
- Phase space can be described by $\left(m_{pK}, heta_p
 ight)$
- Amplitude model using helicity formalism (detailed description in JHEP06(2020)116)

Amplitude for a given Λ state and fixed helicities $\lambda_\Lambda,\lambda_\rho,\lambda_\gamma$

$$\mathcal{A}(\Lambda, \lambda_{\Lambda}, \lambda_{\rho}, \lambda_{\gamma}) \propto \overset{\text{Wigner d matrix}}{d_{\lambda_{\rho}\lambda_{\Lambda}}^{J_{\Lambda}}(\theta_{\rho})} \times \sum_{L, S} \left| \begin{array}{c} \mathcal{C}_{1}^{\Lambda\gamma} \mathcal{C}_{2}^{\rho \mathcal{K}^{-}} \mathcal{C}_{1}^{\rho \mathcal{K}^{-}} \mathcal{C}_{2}^{\rho \mathcal{K}^{-}} \mathcal{A}_{LS}^{\text{coupling}} \left(\frac{p}{M_{\Lambda_{b}^{0}}} \right)^{L} \left(\frac{q}{M_{\Lambda}} \right)^{\ell} \\ \overset{\text{Blatt-Weisskopf}}{\overset{\text{Blatt-Weisskopf}}{\overset{\text{lineshape}}{\overset{\text{form factors}}{\overset{\text{form factors}}{\overset{form factors}}}}}}}} \right)} \right|$$

The full decay rate

$$\sum_{\substack{\lambda_{\Lambda_{b}^{0}},\lambda_{p},\lambda_{\gamma}}} \left| \sum_{\Lambda} \sum_{\lambda_{\Lambda}} d_{\lambda_{p}\lambda_{\Lambda}}^{J_{\Lambda}}(\theta_{p}) \times \sum_{L,S} \left[\begin{array}{cc} \text{constants} & h_{LS}^{\Lambda} \\ LS \text{ coupling} \end{array} \right] \right|$$

• Restricted to Λ resonances and one non-resonant component $J^P = \frac{3}{2}$

Amplitude analysis $\Lambda_b^0 \rightarrow pK^-\gamma$ – Fit results

JHEP 06 (2024) 098

Aniol Lobo

Radiative b-hadron decays at LHCb

Amplitude analysis $\Lambda_b^0 \rightarrow p K^- \gamma - \text{Results}$

<u>JHEP 06 (2024) 098</u>

- Fit fractions presented
 - Largely contributing: Λ(1520), Λ(1600), Λ(1800), Λ(1890)
 - Large interference between $\Lambda(1405) \Lambda(1800)$
- Uncertainty dominated by external uncertainty in the masses and widths of the Λ resonances
- Stay tunned for Ulrik's talk to see $\Lambda_b^0 \rightarrow p K^- \mu \mu$ angular analysis!

Conclusion

- New results in radiative b-hadron decays at LHCb presented:
- Search for $B_s^0 \to \mu^+ \mu^- \gamma$
 - Set limits of branching fractions per bin of di-muon q^2
- Amplitude analysis of $B_s^0 \to K^+ K^- \gamma$
 - Analysis of the di-kaon structure up to $m_{KK} < 2400 \ {\rm MeV/c^2}$
 - First observation of $B_s^0 \rightarrow f_2'(1525)\gamma$
 - Measurement of the overall tensor contribution
- Amplitude analysis of $\Lambda_b^0 \to p K^- \gamma$
 - Analysis of the proton-kaon structure up to $m_{pK} < 2500 \text{ MeV}/\text{c}^2$
 - First observation of this mode
 - Helpful to the interpretation of measurements in $\Lambda_b^0 \rightarrow pK^-l^+l^-$ and potentially to measurements of photon polarization involving analysis of polarized Λ_b^0
 - Helpful to low energy QCD

Radiative b-hadron decays at LHCb

Introduction: LHCb

- Coverage in pseudorapidity range $2 < \eta < 5$
- Excellent vertexing and tracking performance
- Ring-imaging Cherenkov detectors
- Calorimeter system
 - $\frac{\sigma_E}{E} = \left(1 + \frac{10}{PT[GeV/c]}\right)\%$
- Hardware Trigger
 - Using Calorimeter and muon systems
- 2-stages Software Trigger
 - Using full event reconstruction
- Collected 3fb⁻¹ during the run 1 period at 7 and 8 TeV center of mass energy and 6fb⁻¹ during the run 2 period at 13TeV center of mass energy

Simulation

Simulation is used to optimise the selection strategy, to estimate the background and signal shapes, and to calculate the efficiencies. The *pp* collisions are generated using PYTHIA [29] with a specific LHCb configuration [30]. Decays of unstable particles are described by EVTGEN [31], in which final-state radiation is generated using PHOTOS [32]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [33] as described in Ref. [34]. The theory model for the signal simulation is computed in Ref. [16].

Introduction

$B_s^0 \rightarrow \mu^+ \mu^- \gamma$

 $\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) &< 4.2 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [2m_\mu, \ 1.70] \ \text{GeV}/c^2, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) &< 7.7 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [1.70, \ 2.88] \ \text{GeV}/c^2, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma) &< 4.2 \times 10^{-8}, \ m(\mu^+ \mu^-) \in [3.92, \ m_{B_s^0}] \ \text{GeV}/c^2, \\ \mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\text{I, with } \phi \text{ veto}} &< 2.9 \ (3.4) \times 10^{-8}. \end{aligned}$

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{\text{comb.}} < 2.5 \, (2.8) \times 10^{-8}$

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm Bin \ I} < 3.60(4.22) \times 10^{-8} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm Bin \ II} < 6.52(7.73) \times 10^{-8} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm Bin \ III} < 3.44(4.24) \times 10^{-8} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)_{\rm Bin \ I} \phi_{\rm veto} < 2.86(3.43) \times 10^{-8} \end{aligned}$$

q^2 bin	Ι	II	III
$q^2 \left[\text{GeV}^2 / c^4 \right]$	$[4m_{\mu}^2, 2.89]$	[2.89, 8.29]	$[15.37, m^2_{B^0_*}]$
$m(\mu^+\mu^-) \; [{ m GeV}\!/c^2 \;]$	$[2m_{\mu}, 1.70]$	[1.70, 2.88]	$[3.92, m_{B_s^0}]$
$10^{10} \times \mathcal{B}(B^0_s \to \mu^+ \mu^- \gamma)$	82 ± 15	2.54 ± 0.34	9.1 ± 1.1
Fraction of $B_s^0 \to \mu^+ \mu^- \gamma$	87%	2.7%	9.8%

 ϕ veto $m(\mu^+\mu^-) \in [989.6, 1073.4] \text{ MeV}/c^2$.

 $B_S^0 \to K^+ K^- \gamma$

$B_s^0 \to K^+ K^- \gamma$

- $\mu_{f'_2(1525)} = 1521.8 \pm 1.7 \text{ (stat.)} ^{+1.4}_{-1.9} \text{ (syst.) } \text{MeV}/c^2,$
- $\Gamma_{f_2(1525)} = 79.3 \pm 3.5 \text{ (stat.)} ^{+3.3}_{-1.5} \text{ (syst.) MeV},$
- $\mu_{\phi(1020)} = 1019.50 \pm 0.02 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \text{ MeV}/c^2,$
- $\Gamma_{\phi(1020)} = 4.36 \pm 0.05 \text{ (stat.)} ^{+0.03}_{-0.10} \text{ (syst.) MeV},$
- $r_{\phi} = 1.0 \pm 0.2 \text{ (stat.)} \pm 0.1 \text{ (syst.)} \quad (\text{GeV}/c)^{-1}.$

$\Lambda_b^0 \to p K^- \gamma$

$$FF(n) = \frac{\int_{\mathcal{D}} \left(\frac{\mathrm{d}\Gamma(n)}{\mathrm{d}\mathcal{D}}\right) \mathrm{d}\mathcal{D}}{\int_{\mathcal{D}} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}\mathcal{D}}\right) \mathrm{d}\mathcal{D}}$$

• $\mathcal{A}(\Lambda, \lambda_{\Lambda}, \lambda_{p}, \lambda_{\gamma}) \propto \overset{Wigner\ d\ matrix}{d_{\lambda_{p}\lambda_{\Lambda}}^{J_{\Lambda}}(\theta_{p})} \times \sum_{L,S}$

Clebsch-Gordans couplings	orb.ang. <u>mom.barriers</u>	Blat–Weiskopf form factors	lineshape
$C_1^{\Lambda\gamma} C_2^{\Lambda\gamma} C_1^{pK^-} C_2^{pK^-} \qquad \widetilde{A_{LS}}$	$\left(\frac{p}{M_{\Lambda_b^0}}\right)^L \left(\frac{p}{M_{\Lambda_b^0}}\right)^l$	$\overrightarrow{B_L(p)B_l(q)}$	$BW(m_{pK})$

$\binom{c^2}{c^2}$	$00 - LHCb Bun 2 (6 fb^{-1}) + + + + + + + + + + + + + + + + + + +$	Resonance J^P	m_0	Γ_0	Δm_0	$\Delta\Gamma_0$	σ_{m_0}	σ_{Γ_0}	l	L
IeV		$\Lambda(1405)$ $^{1/2^{-}}$	1405	50.5	± 1.3	± 2	1.3	2	0	0, 1
≥ 12 0		$\Lambda(1520)$ $^{3/2^{-}}$	1519	16	1518 - 1520	15 - 17	1	1	2	0, 1, 2
(6	+*****	$\Lambda(1600)$ $^{1/2^{+}}$	1600	200	1570 - 1630	150 - 250	30	50	1	0, 1
s 10		$\Lambda(1670)$ $^{1/2^{-}}$	1674	30	1670 - 1678	25 - 35	4	5	0	0, 1
late	[*]	$\Lambda(1690)$ $^{3/2^{-}}$	1690	70	1685 - 1695	50 - 70	5	10	2	0, 1, 2
1 die		$\Lambda(1800)$ $^{1/2^{-}}$	1800	200	1750 - 1850	150 - 250	50	50	0	0, 1
cal		$\Lambda(1810)$ $^{1/2^{+}}$	1790	110	1740 - 1840	50 - 170	50	60	1	0, 1
ted		$\Lambda(1820)$ $^{5/2^{+}}$	1820	80	1815 - 1825	70 - 90	5	10	3	1, 2, 3
igh		$\Lambda(1830)$ $^{5/2^{-}}$	1825	90	1820 - 1830	60 - 120	5	30	2	1, 2, 3
We		$\Lambda(1890)$ $^{3/2^{+}}$	1890	120	1870 - 1910	80 - 160	20	40	1	0, 1, 2
		$\Lambda(2100)$ 7/2 ⁻	2100	200	2090 - 2110	100 - 250	10	100	4	2, 3, 4
		$\Lambda(2110)$ $^{5/2^{+}}$	2090	250	2050 - 2130	200 - 300	40	50	3	1, 2, 3
	2.5 3.0 3.5 4.0 4.5 5.0	$\Lambda(2350)$ $^{9/2^{+}}$	2350	150	2340 - 2370	100 - 250	20	100	5	3, 4, 5
	$m_{A_h^0}(p\gamma)~[{ m GeV}/c^2]$					'		1		