

Beauty baryon decays at LHCb

Yanxi Wu (Peking University) On behalf of LHCb collaboration

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

ichep2024.org

Introduction

- Heavy baryons are useful systems to study the weak and strong dynamics at low energy of flavor physics
- Much progress in beauty mesons, while many aspects of beauty baryons are largely unknown.

Beauty baryons are produced copiously at LHC

opening up new avenues, improving the precision

Yanxi Wu (PKU)

Beauty baryon decays at LHCb

• A single-arm forward region spectrometer covering $2 < \eta < 5$

Optimised for beauty and charm physics

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

Yanxi Wu (PKU)

Beauty baryon decays at LHCb

Outline

Production, mass and branching fraction:

- Observation of $\mathcal{Z}_b^0 \to \mathcal{Z}_c^+ D_s^-$ and $\mathcal{Z}_b^- \to \mathcal{Z}_c^0 D_s^-$ decays [Eur. Phys. J. C 84, 237 (2024)]
- New decay mode:
- First observation of the $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$ decay [JHEP07(2024)140]
 - Observation and branching fraction measurement of the decay $\Xi_b^- \to \Lambda_b^0 \pi^-$
 - Lifetime:
- NEW Precision measurement of the \mathcal{Z}_b^- baryon lifetime [arXiv: 2406.12111]
 - Decay parameters and CPV
- Measurement of Λ_b^0 , Λ_c^+ and Λ decay parameters using $\Lambda_b^0 \to \Lambda_c^+ h^-$ decays

[LHCb-PAPER-2024-017]

[Phys. Rev. D 108, 072002 (2023)]

Observation of $\mathcal{Z}_b^0 \to \mathcal{Z}_c^+ D_s^-$ and $\mathcal{Z}_b^- \to \mathcal{Z}_c^0 D_s^-$ decays

[Eur. Phys. J. C 84, 237 (2024)]

Motivation

According to the quark model, Λ_h^0 , Ξ_h^0 and Ξ_h^- form an **SU(3) flavour multiplet** •

$$A_b^0 \quad b \quad u \quad d \quad \to A_c^+ D_s^- \quad \to \\ \Xi_b^0 \quad b \quad s \quad u \quad \to \\ \Xi_c^+ D_s^- \quad \to \\ \Xi_b^- \quad b \quad s \quad d \quad \to \\ \Xi_c^0 D_s^- \quad \to \\ \Xi_c^0 D_s^-$$

- According to heavy quark effective theory, they should have approximately the same partial width [Phys. Rept. 245 (1994) 259], [Phys. Rev. D 100 (2019) 034025]
- $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-) = (1.10 \pm 0.10) \times 10^{-2}$ [Phys. Rev. Lett. 112 (2014) 202001] no measurements for $\Xi_b^{0(-)} \to \Xi_c^{+(0)} D_s^-$

 \blacktriangleright Test the SU(3) symmetry, give insights into the dynamics of beauty-baryon weak decays.

Measure the relative production rates of the decays

$$\begin{aligned} \mathcal{R}\left(\frac{\Xi_b^0}{\Lambda_b^0}\right) &\equiv \frac{\sigma\left(\Xi_b^0\right)}{\sigma\left(\Lambda_b^0\right)} \times \frac{\mathcal{B}\left(\Xi_b^0 \to \Xi_c^+ D_s^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}, \\ \mathcal{R}\left(\frac{\Xi_b^-}{\Lambda_b^0}\right) &\equiv \frac{\sigma\left(\Xi_b^-\right)}{\sigma\left(\Lambda_b^0\right)} \times \frac{\mathcal{B}\left(\Xi_b^- \to \Xi_c^0 D_s^-\right)}{\mathcal{B}\left(\Lambda_b^0 \to \Lambda_c^+ D_s^-\right)}, \\ \mathcal{R}\left(\frac{\Xi_b^0}{\Xi_b^-}\right) &\equiv \frac{\sigma\left(\Xi_b^0\right)}{\sigma\left(\Xi_b^-\right)} \times \frac{\mathcal{B}\left(\Xi_b^0 \to \Xi_c^+ D_s^-\right)}{\mathcal{B}\left(\Xi_b^- \to \Xi_c^0 D_s^-\right)} \end{aligned}$$

- Provide measurements of the H_b production cross-section ratios, assuming $\frac{\mathcal{B}(\Xi_b^0 \to \Xi_c^+ D_s^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} \approx 1$
- Test Isospin symmetry: assure that $\frac{\sigma(\Xi_b^0)}{\sigma(\Xi_b^-)} \approx 1$ to a good approximation, resulting $\mathcal{R}\left(\frac{\Xi_b^0}{\Xi_b^-}\right) \approx 1$ at leading order

Results

[Eur. Phys. J. C 84, 237 (2024)]

$$\mathcal{R}\left(\frac{\Xi_b^0}{\Lambda_b^0}\right) = (15.8 \pm 1.1 \pm 0.6 \pm 7.7)\%,$$

$$\mathcal{R}\left(\frac{\Xi_b^-}{\Lambda_b^0}\right) = (16.9 \pm 1.3 \pm 0.9 \pm 4.3)\%$$

$$\mathcal{R}\left(\frac{\Xi_b^0}{\Xi_b^-}\right) = (93.6 \pm 9.6 \pm 6.1 \pm 51.0)\%$$

• Consistent with SU(3) flavour symmetry

• Consistent with several predictions for relative

production rates and decay branching fractions.

[Phys. Rev. D 100 (2019) 034025] [Phys. Lett. B 751 (2015) 127] [Eur. Phys. J. C 78 (2018) 224] [Phys. Rev. D 105 (2022) 013003]

Yanxi Wu (PKU)

First observation of the

 $\Lambda_b^0 \to D^+ D^- \Lambda$ decay

JHEP07(2024)140

Introduction

• $\Lambda_b^0 \to D^+ D^- \Lambda$ mediated by $b \to c \bar{c} s$, it is predicted via two types of two-body

intermediate states

[Phys. Rev. D 103, 114013 (2021)]

- a *A* baryon and a charmonium resonance
- a charmed baryon and a *D* meson

• $\Lambda_b^0 \to D^+ D^- \Lambda$ Not observed yet

Yanxi Wu (PKU)

2024/7/19

Results

NEW First observation of the $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$ decay

[JHEP07(2024)140]

11

Two-body invariant masses:

Observation and branching fraction measurement of the decay $\Xi_b^- \to \Lambda_b^0 \pi^-$

[Phys. Rev. D 108, 072002 (2023)]

Introduction

• Mediated by $s \rightarrow u\bar{u}d$, where the *b* quark is a spectator

- A previous LHCb study using Run1 dataset shows an evidence (3.2σ) for this decay [PRL115 (2015) 241801]
- Updated with Run2 dataset
- Normalizing the signal yield to that of inclusively produced Λ_b^0

$$r_s \equiv \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \mathcal{B}(\Xi_b^- \to \Lambda_b^0 \pi^-)$$

Results

Observation and BR measurement of
$$\mathcal{Z}_b^- o \Lambda_b^0 \pi^-$$

$$r = (7.3 \pm 0.8 \pm 0.6) \times 10^{-4}$$

$$\mathcal{B}(\Xi_b^- \to \Lambda_b^0 \pi^-) = (0.89 \pm 0.10 \pm 0.07 \pm 0.29)\%$$

Using the independent $f_{\Xi_b^-}/f_{\Lambda_b^0}$ measurement from [PRD 99 (2019) 052006]

- Three times better statistical precision than Run1
- Consistent with some predictions
 - [JHEP03(2016)028] [PLB 750. (2015) 653] [PRD 93 (2016) 034020]
- Extra contribution to the Ξ_b^- decay width should be considered for **lifetime** comparison between experiment and theory predictions, where the predictions only consider the decay of the *b* quark.

Precision measurement of the

Ξ_b^- baryon lifetime

arXiv: 2406.12111

Submitted to PRD

Introduction

- The heavy quark expansion (HQE) framework can predict the inclusive decay rates of beauty hadrons
 - Calculate *b*-hadron parameters required for determination of CKM matrix elements
 - Provide constraints on physics beyond the Standard Model

		Ν	leeds to be updated!
Lifetimes	Theoretical uncertainties	Experimental uncertainties	
$ au_{arepsilon_b}^-/ au_{arLambda_b^0}$	1.9%	2.5%	
$ au_{\Omega_b^-}/ au_{\Lambda_b^0}$	4.2%	11%	[JHEP 04 (2023) 034]

Test HQE? \longrightarrow confront its predictions of lifetimes

- Available measurement by LHCb limited by statistics, using only Run 1 data
- Update measurement of Ξ_b^- lifetime using Run2 data

- Measure lifetime ratio $\tau_{\Xi_{b}^{-}}/\tau_{A_{b}^{0}}$
 - Using Run2 data
- Reconstruction: $\Xi_b^- \to \Xi_c^0 \pi^-$, $\Xi_c^0 \to p K^- K^- \pi^+$
 - Normalization: $\Lambda_b^0 \to \Lambda_c^+ \pi^-$, $\Lambda_c^+ \to p K^- \pi^+$

Measure the ratio of efficiency-corrected signal yields as a function of decay time

NEW

$$R(t) \equiv \frac{N[\Xi_b^- \to \Xi_c^0 \pi^-](t)}{N[\Lambda_b^0 \to \Lambda_c^+ \pi^-](t)} \cdot \frac{\epsilon [\Lambda_b^0 \to \Lambda_c^+ \pi^-](t)}{\epsilon [\Xi_b^- \to \Xi_c^0 \pi^-](t)} = R_0 \exp(\lambda t)$$
$$\lambda \equiv \frac{1}{\tau_{\Lambda_b^0}} - \frac{1}{\tau_{\Xi_b^-}}$$
$$\frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}} = \frac{1}{1 - \lambda \tau_{\Lambda_b^0}} \quad (\tau_{\Lambda_b^0} = 1.464 \pm 0.010 \text{ ps})$$

[Prog. Theor. Exp. Phys. 2022 (2022) 083C01]

Results

Consistent with HQE expectation:

s-quark decay $\Xi_b^- \to \Lambda_b^0 \pi^-$ would reduce HQE prediction by ~1%.

Still in agreement!

[Phys. Rev. D108 (2023) 072002]

Yanxi Wu (PKU)

Beauty baryon decays at LHCb

Measurement of Λ_b^0 , Λ_c^+ and Λ decay parameters using $\Lambda_b^0 \rightarrow \Lambda_c^+ h^-$ decays

[LHCb-PAPER-2024-017] In preparation

Introduction

Decay parameters first proposed by Lee and Yang (1957)

• for
$$\frac{1}{2}^{+} \rightarrow \frac{1}{2}^{+} 0^{-}$$
 decays

$$\alpha \equiv \frac{2Re(s * p)}{|s|^{2} + |p|^{2}}, \qquad \beta \equiv \frac{2Im(s * p)}{|s|^{2} + |p|^{2}}, \qquad \gamma \equiv \frac{|s|^{2} - |p|^{2}}{|s|^{2} + |p|^{2}}$$

- With $\alpha^2 + \beta^2 + \gamma^2 = 1$, where s: S-wave amplitude, and p: P-wave amplitude
- Decay parameters provide an excellent understanding of the baryon decay dynamics and are used to probe the matter–antimatter asymmetry
- *CP* violation can be quantified by

$$A_{\alpha} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -\tan\Delta\delta\tan\Delta\phi, \qquad R_{\beta} = \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}} = \tan\Delta\phi$$

- $\overline{\alpha}$, $\overline{\beta}$: decay parameters of anti-baryon decay
- $\Delta\delta$: strong phase difference, $\Delta\phi$: weak phase difference between the S and P wave amplitudes

Beauty baryon decays at LHCb

- Status of decay parameters measurement:
 - Λ⁺_c: several decays measured by Belle and BESIII [Phys. Rev. D 107, 032003] [Science Bulletin, Volume 68, Issue 6, 2023, pp. 583-592]
 - Λ: Precisely measured by BESIII [Phys. Rev. D 106, 052003 (2022)]

•
$$\Lambda_b^0$$
: no result for $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ 0^-$ decays

Decay channels considered in this work

$$\Lambda_b^0 \to \Lambda_c^+ h_1^- \begin{cases} \Lambda_c^+ \to \Lambda h_2^+, \Lambda \to p\pi^- \ (h_{1,2} = \pi, K) \\ \\ \Lambda_c^+ \to pK_{\rm S}^0 \end{cases}$$

Decay parameters extracted from angular distributions

Angular analysis

For three-step cascade decays: $\Lambda_b^0 \rightarrow \Lambda_c^+ h_1^-, \Lambda_c^+ \rightarrow \Lambda h_2^+, \Lambda \rightarrow p\pi^- (h_{1,2} = \pi, K)$ $\Omega \equiv (\theta_0, \theta_1, \phi_1, \theta_2, \phi_2)$

For two-step cascade decays:

$$\Lambda_b^0 \to \Lambda_c^+ h^-, \Lambda_c^+ \to p K_{\rm S}^0$$
$$\Omega \equiv (\theta_0, \theta_1, \phi_1)$$

Results

- First measurement of decay parameters of $\Lambda_b^0 \rightarrow \Lambda_c^+ h^-$
- Precise measurements of β , γ of $\Lambda_c^+ \to \Lambda h^+$
- Precision of α of $\Lambda_c^+ \to \Lambda h^+/pK_S^0$ improves significantly
- Independent measurement for $\Lambda \to p \pi^-$, consistent with BESIII
- Negligible CP violation in these processes

Decay	$\langle \alpha \rangle$	A_{α}
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$-1.003 \pm 0.008 \pm 0.005$	$0.007 \pm 0.008 \pm 0.005$
$\Lambda^0_b \to \Lambda^+_c K^-$	$-0.964 \pm 0.028 \pm 0.015$	$-0.032\pm0.029\pm0.006$
$\Lambda_c^+ \to \Lambda \pi^+$	$-0.785\pm0.006\pm0.003$	$-0.003 \pm 0.008 \pm 0.002$
$\Lambda_c^+ \to \Lambda K^+$	$-0.516\pm0.041\pm0.021$	$0.102\pm 0.080\pm 0.023$
$\Lambda_c^+ \to p K_{\rm S}^0$	$-0.754 \pm 0.008 \pm 0.006$	$-0.014\pm0.011\pm0.008$
$\Lambda \to p\pi^-$	$0.733 \pm 0.012 \pm 0.006$	$-0.022\pm0.016\pm0.007$

* More detailed results in the BackUp

Beauty baryon decays at LHCb

- LHCb is a factory of beauty baryons
- With LHCb analysis, we can greatly improve knowledge about...
 - New decay modes: $\Xi_b^0 \to \Xi_c^+ D_s^-$ and $\Xi_b^- \to \Xi_c^0 D_s^-$, $\Lambda_b^0 \to D^+ D^- \Lambda$, $\Xi_b^- \to \Lambda_b^0 \pi^-$
 - More precise mass and lifetime about Ξ_b^0 and Ξ_b^-
 - First measurement of decay parameters of $\Lambda_b^0 \to \Lambda_c^+ h^-$, more precise ones of Λ_c^+
- Open the door to ...
 - Search for exotic states
 - Test and constrain theoretical models
 - Search for new physics

Looking forward to Run3!

Thanks for your attention

BackUp

Mass fit & systematics

Model:

- Signal: two crystal ball
- Σ_b^{*-}: BW
- Comb,: threshold function
- Signal yield: 126 ± 19 for $\Lambda_c^+ \pi^-$, 154 ± 23 for $\Lambda_c^+ \pi^- \pi^+ \pi^-$
- Significance: 11σ

•
$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} = (8.2 \pm 0.7 \pm 0.6 \pm 2.5)\%$$
 at $\sqrt{s} = 13 \text{ TeV}$

Systematics:

Source	Value (%)	
	$\Lambda_c^+\pi^-$	$\Lambda_c^+\pi^-\pi^+\pi^-$
Ξ_b^- signal shape	1.4	2.4
Ξ_b^- background shape	3.1	1.8
$\Lambda_b^{\bar{0}}$ signal shape	0.3	0.8
Λ_b^0 background shape	0.1	0.7
Geom. acceptance	1.8	1.8
Sim. weights & sample sizes	3.6	3.4
Trigger efficiency	1.7	0.4
$\Xi_b^- p_{\rm T}$ spectrum	3.2	5.6
IP resolution	1.3	0.7
BDT2 efficiency	3.0	3.5
Tracking efficiency	3.3	3.3
Multiple candidates	0.5	2.6
Ξ_b^- lifetime	3.0	2.5
Total	8.5	9.7

Mass fit & systematics

NEW Precision measurement of the \mathcal{Z}_b^- lifetime [arXiv: 2406.12111]

Model:

- Signal: 2 Crystal Ball functions
- misID: 2 Crystal Ball functions
- Missing X: ARGUS
- Comb. Bkg.: exponential function

Source	Value (%)
Simulated sample size	0.43
Signal shape	0.07
Background shape	0.01
$\chi^2_{ m IP}~{ m scaling}$	0.20
Truth matching	0.07
Bin width in mass	0.03
Mass fit range	0.18
Bin width in time	0.06
BDT requirement	0.21
Λ_b^0 lifetime	0.05
Total	0.57

Status

Λ_c^+

• Decay parameter measurements

 $\begin{array}{l} \alpha(\Lambda_c^+ \to \Lambda \pi^+) &= -0.80 \pm 0.11 \pm 0.02 \text{[BESIII]} \\ \alpha(\Lambda_c^+ \to \Sigma^+ \pi^0) &= -0.57 \pm 0.10 \pm 0.07 \text{[BESIII]} \\ \alpha(\Lambda_c^+ \to \Sigma^0 \pi^+) &= -0.73 \pm 0.17 \pm 0.07 \text{[BESIII]} \\ \alpha(\Lambda_c^+ \to p K_S^0) &= 0.18 \pm 0.43 \pm 0.14 \text{[BESIII]} \\ \alpha(\Lambda_c^+ \to \Lambda l^+ \nu_l) &= -0.86 \pm 0.03 \pm 0.02 \text{[CLEO-c]} \end{array}$

• Measurements of CP asymmetry of decay parameter

 $\begin{array}{l} A_{\alpha}(\Lambda_{c}^{+} \to \Lambda e^{+} \nu_{e}) = & 0.00 \pm 0.03 \pm 0.02 [\text{CLEO-c}] \\ A_{\alpha}(\Lambda_{c}^{+} \to \Lambda \pi^{+}) & = -0.07 \pm 0.19 \pm 0.24 [\text{FOCUS}] \end{array}$

• New measurements from Belle

 $\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0) = -0.48 \pm 0.02 \pm 0.02$ $\alpha(\Lambda_c^+ \to \Sigma^+ \eta) = -0.99 \pm 0.03 \pm 0.05$ $\alpha(\Lambda_c^+ \to \Sigma^+ \eta') = -0.46 \pm 0.06 \pm 0.03$ [Phys. Rev. D 107, 032003] $\begin{aligned} \alpha(\Lambda_c^+ \to \Lambda K^+) &= -0.585 \pm 0.049 \pm 0.018 \\ \alpha(\Lambda_c^+ \to \Lambda \pi^+) &= -0.755 \pm 0.005 \pm 0.003 \\ \alpha(\Lambda_c^+ \to \Sigma^0 K^+) &= -0.54 \pm 0.18 \pm 0.09 \\ \alpha(\Lambda_c^+ \to \Sigma^0 \pi^+) &= -0.463 \pm 0.016 \pm 0.008 \\ \end{aligned}$ [Science Bulletin, Volume 68, Issue 6, 2023, pp. 583-592]

$\Lambda_b^0 \& \Lambda$

• Λ_b^0 decay parameter measurements

 $\alpha (\Lambda_b^0 \rightarrow J/\Psi \Lambda) = -0.017 \pm 0.026 \text{ [LHCb, CMS, ATLAS]}$

• Theoretical predictions in the Standard Model

 $\begin{aligned} \alpha \left(\Lambda_b^0 \to \Lambda_c^+ \pi^- \right) &= -0.9999 \pm 0.0224 \\ \alpha \left(\Lambda_b^0 \to \Lambda_c^+ K^- \right) &= -0.9998 \pm 0.0241 \end{aligned}$

[Phys. Rev. D 99, 014023 (2019)]

• Λ decay parameter measurements

 $\alpha(\Lambda \to p\pi^{-}) = 0.7519 \pm 0.0036 \pm 0.0024$ $\bar{\alpha}(\bar{\Lambda} \to \bar{p}\pi^{+}) = -0.7559 \pm 0.0036 \pm 0.0030$ [Phys. Rev. D 106, 052003 (2022)]

Precisely measured by BESIII

Selection and mass fit

NEW Measurement of Λ_b^0 , Λ_c^+ and Λ decay parameters [LHCb-PAPER-2024-017]

Mass fit:

Candidates / (8.0 MeV/c²)

Candidates / (8.0 MeV/ c^2)

5600

5700

 $m(\Lambda_c^+\pi^-)$ [MeV/c²]

Selection:

- Large transverse momentum (final states)
- Inconsistent with being directly produced from any PV (final states)
- Good-quality vertex displaced from PV
- $\Lambda(K_S^0)$ within $\pm 26(20)$ MeV/ c^2
- PID

• BDT

 $Yield^{10^3} - 10^4$

Beauty baryon decays at LHCb

Angular analysis

NEW Measurement of Λ_b^0 , Λ_c^+ and Λ decay parameters [LHCb-PAPER-2024-017]

For three-step cascade decays: $\Omega \equiv (\theta_0, \theta_1, \phi_1, \theta_2, \phi_2)$ $\frac{d^3\Gamma}{d\cos\theta_1 d\cos\theta_2 d\phi_2} \propto (1 + \alpha_{A_b^0}^{A_c^+ h_2^-} \alpha_{A_c^+}^{Ah_1^+} \cos\theta_1 + \alpha_{A_c^+}^{Ah_1^+} \alpha_A^{p\pi^-} \cos\theta_2 + \alpha_{A_b^0}^{A_c^+ h_2^-} \alpha_A^{p\pi^-} \cos\theta_1 \cos\theta_2 - \alpha_{A_b^0}^{A_c^+ h_2^-} \gamma_{A_c^+}^{Ah_1^+} \alpha_A^{p\pi^-} \sin\theta_1 \sin\theta_2 \cos\phi_2 + \alpha_{A_b^0}^{A_c^+ h_2^-} \beta_{A_c^+}^{Ah_1^+} \alpha_A^{p\pi^-} \sin\theta_1 \sin\theta_2 \sin\phi_2)$ For two-step cascade decays: $\Omega \equiv (\theta_0, \theta_1, \phi_1)$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_1} \propto 1 + \alpha_{\Lambda_b^0}^{\Lambda_c^+ h_2^-} \alpha_{\Lambda_c^+}^{pK_s^0} \cos\theta_1$$

* Λ_b^0 polarization consistent with zero at LHC [J. High Energ. Phys. 2020, 110]

Likelihood and signal PDF

The logarithm of the likelihood function $(\log \mathcal{L})$ is constructed as

$$\log \mathcal{L}(\vec{\nu}) = \sum_{k=1}^{5} \left(\mathcal{C}_k \sum_{i \in \text{data}_k} w_{k,i} \times \log \left[\mathcal{P}_k(\vec{\Omega}_k^i | \vec{\nu}) \right] \right), \tag{4}$$

where $\vec{\nu}$ is the set of decay parameters, $\vec{\Omega}$ is the set of angular variables, and $\mathcal{P}(\vec{\Omega}|\vec{\nu})$ represents the signal probability density function (PDF). The subscript k runs over the five Λ_b^0 cascade decays, and the subscript i runs over all the candidates of the k-th decay, data_k. The *sPlot* weight $w_{k,i}$ in the log \mathcal{L} is used to subtract the contribution of background candidates [58]. The constants $\mathcal{C}_k \equiv \sum_{i \in \text{data}_k} w_{k,i} / \sum_{i \in \text{data}_k} w_{k,i}^2$ aim for correcting the reported statistical uncertainties [60]. The signal PDF $\mathcal{P}_k(\vec{\Omega}_k|\vec{\nu})$ of the k-th Λ_b^0 decay is formulated as

$$\mathcal{P}_{k}(\vec{\Omega}_{k}|\vec{\nu}) = \frac{\epsilon_{k}(\vec{\Omega}_{k}) \cdot f_{k}(\vec{\Omega}_{k}|\vec{\nu})}{\int \mathrm{d}\vec{\Omega}_{k} \ \epsilon_{k}(\vec{\Omega}_{k}) \cdot f_{k}(\vec{\Omega}_{k}|\vec{\nu})},\tag{5}$$

Decay parameter results

Table 1: Measurements of α parameters and their *CP* asymmetries for $\Lambda_b^0 \to \Lambda_c^+ \pi^-$, $\Lambda_b^0 \to \Lambda_c^+ K^-$, $\Lambda_c^+ \to \Lambda \pi^+$, $\Lambda_c^+ \to \Lambda K^+$, $\Lambda_c^+ \to p K_{\rm S}^0$ and $\Lambda \to p \pi^-$ decays. The first uncertainties are statistical and the second are systematic.

NEW

Decay	α	\bar{lpha}	$\langle \alpha \rangle$	A_{lpha}
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$-1.010\pm 0.011\pm 0.003$	$0.996 \pm 0.011 \pm 0.003$	$-1.003\pm0.008\pm0.005$	$0.007 \pm 0.008 \pm 0.005$
$\Lambda_b^0 \to \Lambda_c^+ K^-$	$-0.933 \pm 0.042 \pm 0.014$	$0.995 \pm 0.036 \pm 0.013$	$-0.964 \pm 0.028 \pm 0.015$	$-0.032\pm0.029\pm0.006$
$\Lambda_c^+ \to \Lambda \pi^+$	$-0.782\pm0.009\pm0.004$	$0.787 \pm 0.009 \pm 0.003$	$-0.785\pm0.006\pm0.003$	$-0.003 \pm 0.008 \pm 0.002$
$\Lambda_c^+ \to \Lambda K^+$	$-0.569 \pm 0.059 \pm 0.028$	$0.464 \pm 0.058 \pm 0.017$	$-0.516 \pm 0.041 \pm 0.021$	$0.102\pm 0.080\pm 0.023$
$\Lambda_c^+ o p K_{ m S}^0$	$-0.744 \pm 0.012 \pm 0.009$	$0.765 \pm 0.012 \pm 0.007$	$-0.754 \pm 0.008 \pm 0.006$	$-0.014\pm0.011\pm0.008$
$\Lambda \to p \pi^-$	$0.717 \pm 0.017 \pm 0.009$	$-0.748 \pm 0.016 \pm 0.007$	$0.733 \pm 0.012 \pm 0.006$	$-0.022\pm0.016\pm0.007$

Table 2: Measurements of the decay parameters β and γ , the phase difference Δ and the *CP* asymmetry R_{β} for $\Lambda_c^+ \to \Lambda \pi^+$, $\Lambda_c^+ \to \Lambda K^+$ decays and their charge-conjugated decays. The first uncertainties are statistical and the second are systematic.

Decay	$\Lambda_c^+ \to \Lambda \pi^+$	$\Lambda_c^+\to\Lambda K^+$
β	$0.368 \pm 0.019 \pm 0.008$	$0.35 \pm 0.12 \pm 0.04$
$ar{eta}$	$-0.387 \pm 0.018 \pm 0.010$	$-0.32 \pm 0.11 \pm 0.03$
γ	$0.502 \pm 0.016 \pm 0.006$	$-0.743 \pm 0.067 \pm 0.024$
$ar{\gamma}$	$0.480 \pm 0.016 \pm 0.007$	$-0.828 \pm 0.049 \pm 0.013$
Δ	$0.633 \pm 0.036 \pm 0.013$	$2.70 \pm 0.17 \pm 0.04$
$\bar{\Delta}$	$-0.678 \pm 0.035 \pm 0.013$	$-2.78 \pm 0.13 \pm 0.03$
R_eta	$0.012 \pm 0.017 \pm 0.005$	$-0.04 \pm 0.15 \pm 0.02$