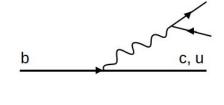
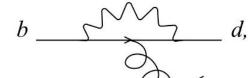


### **Hadronic B decays**

- Goal: probe indirectly the SM via weak interactions of quarks
- 387M (Belle II) and 772M (Belle) BB pairs to accomplish world's best results.
- **B to hadronic** decays via  $b \rightarrow c$ , **u tree** or  $b \rightarrow d$ , **s penguins**

Talk focuses on improvement of our knowledge on B decays, measure parameters related to CKM angles :

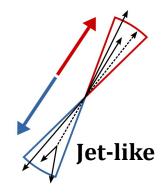

• 
$$B^+ \rightarrow D^0 \rho (770)^+$$

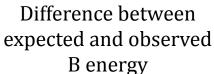

• 
$$B \to D^{(*)}K^-K^{(*)0}$$

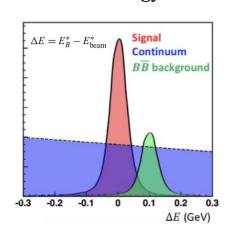
$$\bullet \quad B^0 \to \omega \omega$$

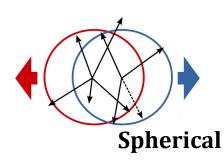


•  $B^0 \rightarrow \pi^0 \pi^0$  towards  $\phi_2$  measurement [Yu Nakazawa's talk]

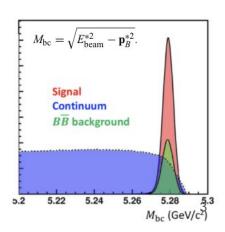




### **Analysis workflow**

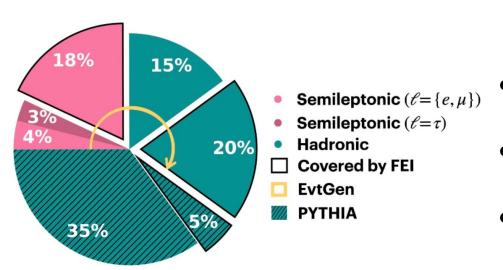

- Y(4S) decays  $\rightarrow$  BB 96% of the time, background from  $e^+e^- \rightarrow q\bar{q}$  events.
- Event selection: final state particle with good track selection, particle ID criteria etc.
- **Reconstruction**: forming B meson using final state particles.
- Background reduction: event-shape variables to suppress background etc.
- **Fit**: to extract the signal events.
- **Systematic uncertainties**: toy MC and control sample studies.

#### **Event Topology**

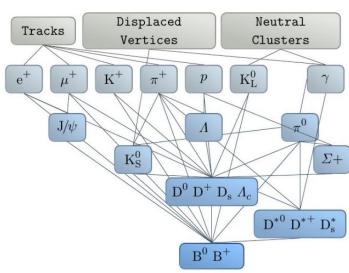







Invariant B mass with energy replaced by beam energy




## Improve B decay knowledge

- Hadronic decays of B-mesons account for
   ~75% of the total branching fraction
- But it's largely unknown (~50%)
- Measurements with small data sets ~ large uncertainties
- Important to improve hadronic B-tagging



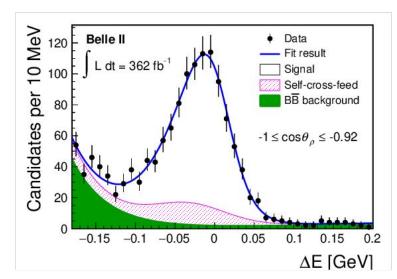
#### Tagging algorithm (**FEI**)

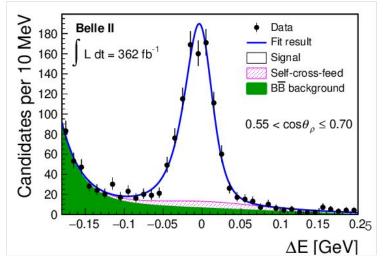


- **Hadronic B tagging:** best purity and you get the B momentum vector
- BDT for each decay trained on simulation  $[\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{n} \pi \mathbf{m} \pi^0]$
- Important for decays with missing energy [Meihong's talk]

## Branching fraction of $B^+ \to D^0 \rho (770)^+$ at Belle II

Test heavy-quark limit and factorisation models [Nucl. Phys. B 591, 313 (2000)]

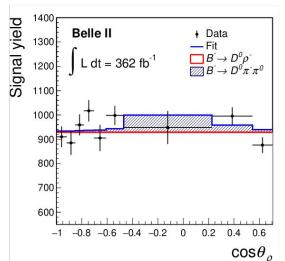

WA BF: (1.35 ± 0.18)% driven by CLEO measurement with large uncertainty (14%) CLEO, PRD 50, 43 (1994)

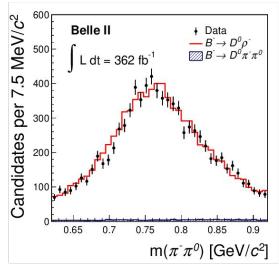

Signal extracted from **fit to**  $\Delta$ **E** 

**Challenge**: separate  $B^+ \to D^0 \rho^+ (\to \pi^+ \pi^0)$  resonant and  $B^+ \to D^0 \pi^+ \pi^0$  non-resonant component.

— Fit performed in bins of **helicity angle** ( $\cos \theta_{\rho}$ )

 $\theta \rho$ : angle between  $\pi$  momentum and direction opposite to B momentum in  $\rho$  rest frame.

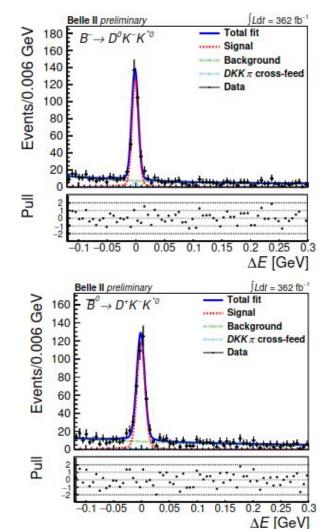


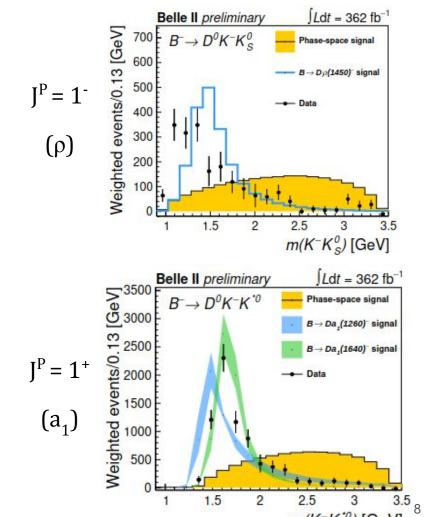

## Branching fraction of B<sup>+</sup> $\rightarrow$ D<sup>0</sup> $\rho$ (770)<sup>+</sup> at Belle II

### Template fit in $cos\theta_{\rho}$

- Non-uniform binning : flat  $\cos\theta_{\rho}$  distribution for  $\mathbf{B} \to \mathbf{D} \mathbf{\rho}$
- **Less than 2 %** contribution of  $B^+ \rightarrow D^0 \pi^+ \pi^0$  s-wave component







$$\mathcal{B}(B^+ \to D^0 \rho^+) = (0.94 \pm 0.02 \pm 0.05) \%$$

- World's best result with more than 2x improvement in precision
- Factorisation test: in agreement with prediction, improved precision
- Systematically limited by uncertainty on  $\pi^0$  efficiency

- $\mathbf{B} \rightarrow \mathbf{DKK}$ : largely unexplored sector
- > Few % of B branching fraction expected
- Only 0.28 % measured so far
- **Challenge:** estimate **non-resonant** 
  - $B \rightarrow DK^-K^+\pi$  modes in  $K^*$
- Signal extracted from **fit to**  $\Delta$ **E**
- Subtract background, and look at invariant
   mass and Dalitz distributions



- Efficiency correction applied in the plane m[D (\*)K-] and m[K-K (s) (\*)0]
- Extraction of bkg-subtracted and
   efficiency corrected invariant mass and
   helicity
- Dominant transitions  $J^P = 1^{-/+}$
- $\mathbf{B} \to \mathbf{D}^{(*)} \mathbf{D}_{\mathbf{s}} (\to \mathbf{K} \mathbf{K}^{(*)})$  are used as control modes



| Channel                              | Yield                         | Average $\varepsilon$ | $\mathcal{B}~[10^{-4}]$    |                   |
|--------------------------------------|-------------------------------|-----------------------|----------------------------|-------------------|
| $B^-  ightarrow D^0 K^- K_S^0$       | $209 \pm 17$                  | 0.098                 | $1.82 \pm 0.16 \pm 0.08$   | World's best      |
| $\overline B{}^0 	o D^+ K^- K^0_S$   | $105 \pm 14$                  | 0.048                 | $0.82 \pm 0.12 \pm 0.05$ - | 7                 |
| $B^-  ightarrow D^{*0} K^- K_S^0$    | $51 \pm 9$                    | 0.044                 | $1.47 \pm 0.27 \pm 0.10$   | First observation |
| $\overline B{}^0	o D^{*+}K^-K^0_S$   | $36 \pm 7$                    | 0.046                 | $0.91 \pm 0.19 \pm 0.05$ - | J                 |
| $B^-  ightarrow D^0 K^- K^{*0}$      | $325 \pm 19$                  | 0.043                 | $7.19 \pm 0.45 \pm 0.33$ - | 1                 |
| $\overline B{}^0	o D^+K^-K^{*0}$     | $385 \pm 22$                  | 0.021                 | $7.56 \pm 0.45 \pm 0.38$   | World's best      |
| $B^-  ightarrow D^{*0}K^-K^{*0}$     | $160 \pm 15$                  | 0.019                 | $11.93 \pm 1.14 \pm 0.93$  | world's best      |
| $\overline B{}^0\to D^{*+}K^-K^{*0}$ | $193 \pm 14$                  | 0.020                 | $13.12 \pm 1.21 \pm 0.71$  | J                 |
| $B^- 	o D^0 D_s^-$                   | $144 \pm 12 \ / \ 153 \pm 13$ | 0.09 / 0.04           | $95 \pm 6 \pm 5$           | 1 Precision       |
| $\overline B{}^0	o D^+D_s^-$         | $145 \pm 12 / 159 \pm 13$     | 0.05 / 0.02           | $89 \pm 5 \pm 5$           | compatible        |
| $B^- 	o D^{*0} D_s^-$                | $30 \pm 6 / 29 \pm 7$         | 0.04 / 0.02           | $65\pm10\pm6$              |                   |
| $\overline B{}^0 	o D^{*+} D_s^-$    | $43 \pm 7 / 37 \pm 7$         | 0.04 / 0.02           | $83 \pm 10 \pm 6$          | J with WA         |

Total 12 channels, first observation for 3 channels World's best precision for the rest

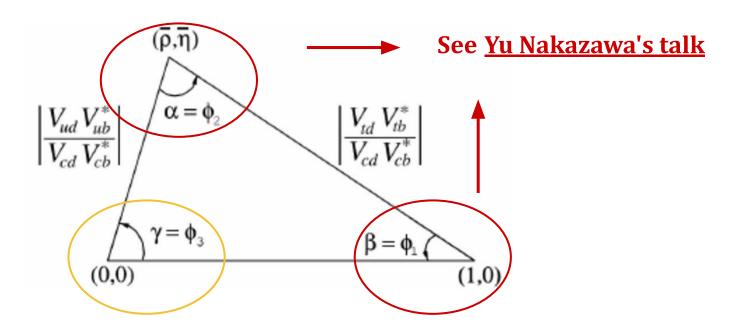
### $B^0 \rightarrow \omega \omega$ at Belle

- Rare and never observed decay
- Polarisation (f<sub>L</sub>) and direct-CPV parameter A<sub>CP</sub>
- $f_L$  useful for  $B \rightarrow VV$  decays
- Using full Belle dataset (711 fb<sup>-1</sup>)
- Signal extraction from 7D fit to: ΔE, M<sub>bc</sub>,
   continuum suppression, ω invariant masses &
   cosine of helicity angles of both the ω's.

$$\mathcal{B} = (1.53 \pm 0.29 \pm 0.17) \times 10^{-6}$$

$$A_{CP} = -0.44 \pm 0.43 \pm 0.11$$

$$f_{I} = 0.87 \pm 0.13 \pm 0.13$$

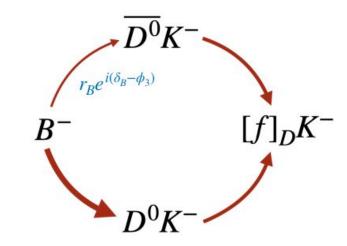

Events / ( 0.00485 ) 0.04 M<sub>bc</sub> (GeV/c<sup>2</sup>) 5.24 5.25 5.26 5.27 5.28 ΔE (GeV) continuum BB bka. Belle preliminary Belle preliminary Events / ( 0.008 ) (0.008  $M_2(\pi^+\pi^-\pi^0)$  [GeV/c<sup>2</sup>] Belle preliminary  $M_*(\pi^+\pi^-\pi^0)$  [GeV/c<sup>2</sup>] Belle preliminary

Belle preliminary

Belle preliminary

First observation of the decay (7.9 $\sigma$ ), no significant A  $_{CP}$ 

## **CKM** angles




## First Belle+Belle II combination of $\phi_3$ measurements

- **Tree level** decays strong constraints on SM
- $\phi_3$ : phase between  $\mathbf{b} \to \mathbf{u}$  and  $\mathbf{b} \to \mathbf{c}$
- Interference between two decays to same final state gives access to phase:
- Current WA dominated by LHCb

#### **Various approaches - different D final states:**

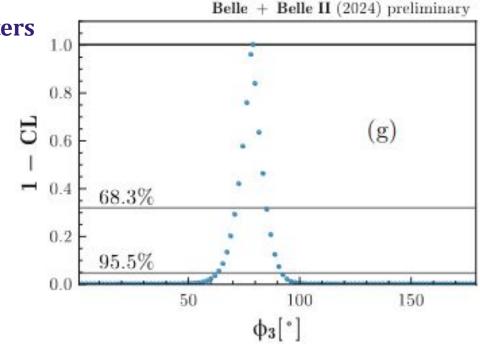
- Self-conjugate final states  $D \to K_s^0 h^+ h^- (\pi^0)$
- Cabibbo-suppressed decays  $\mathbf{D} \to \mathbf{K}_S^{\phantom{S}0} \mathbf{K}^{\pm} \, \pi^{\mp}$ ,  $\mathbf{D} \to \mathbf{K}^{+} \pi^{-} (\pi^{0})$
- CP eigenstates  $D \to K^+K^-$ ,  $K_s^{\phantom{s}0}\pi^0$



$$\frac{\mathscr{A}^{\text{suppr.}}\left(B^{-} \to \overline{D}^{0}K^{-}\right)}{\mathscr{A}^{\text{favor.}}\left(B^{-} \to D^{0}K^{-}\right)} = r_{\text{B}}e^{i(\delta_{\text{B}} - \phi_{3})}$$

WA:  

$$\Phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$$
HFLAV


## First Belle+Belle II combination of $\phi_3$ measurements

60 input observables, 16 free parameters

$$\Phi_3$$
= (78.6<sup>+7.2</sup><sub>-7.3</sub>) °

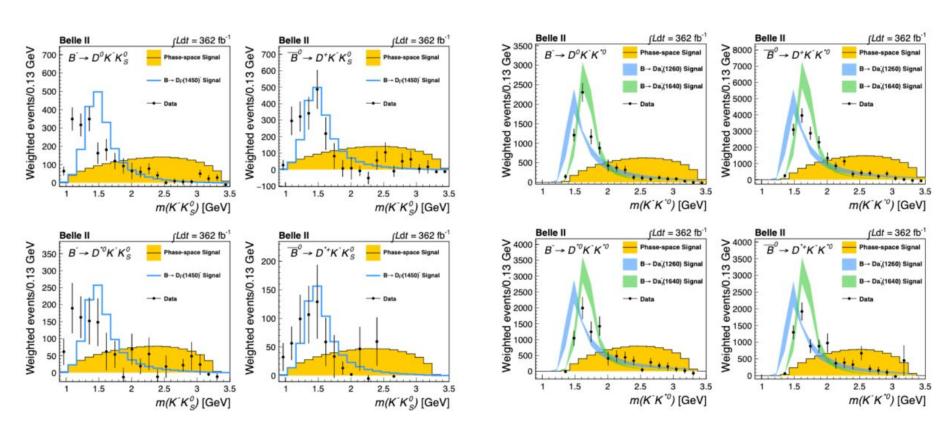
First combination of Belle and Belle II measurements.

[arXiv.2404.12817]



| Parameters         | $\phi_3(^\circ)$ | $r_B^{DK}$    | $\delta_B^{DK}(^\circ)$ | $r_B^{D\pi}$    | $\delta_B^{D\pi}(^\circ)$ | $r_B^{D^*K}$      | $\delta_B^{D^*K}(^{\circ})$ |
|--------------------|------------------|---------------|-------------------------|-----------------|---------------------------|-------------------|-----------------------------|
| Best fit value     | 78.6             | 0.117         | 138.4                   | 0.0165          | 347.0                     | 0.234             | 341                         |
| 68.3% interval [7] | 1.4, 85.4        | [0.105,0.130] | $[129.1,\ 146.5]$       | [0.0109,0.0220] | [337.4, 355.7]            | $[0.165,\ 0.303]$ | [327, 355]                  |
| 95.5% interval     | [63, 92]         | [0.092,0.141] | [118, 154]              | [0.006,0.027]   | [322, 366]                | $[0.10, \ 0.37]$  | [307, 369]                  |

### **Summary**


- Exploiting the Belle II run 1 data set along with the Belle data set to test SM
- Improve the hadronic B tagging with FEI new measurements

- Improve B decay knowledge :  $\mathbf{B}^+ \to \mathbf{D}^0 \mathbf{\rho}^+$
- Observe new decay channels :  ${f B} 
  ightarrow {f D}^{\,(*)} {f K}^- {f K}_S^{\,\,0}$  and  ${f B}^0 
  ightarrow \omega \omega$
- ullet Measure parameters related to CKM angles : combined  $ullet_3$  from Belle+Belle II

Many world's best and competitive results with smaller dataset. Run 2 started, more luminosity is coming!

Stay tuned!!!

Bkg subtracted and efficiency corrected m[K<sup>-</sup>K] distributions

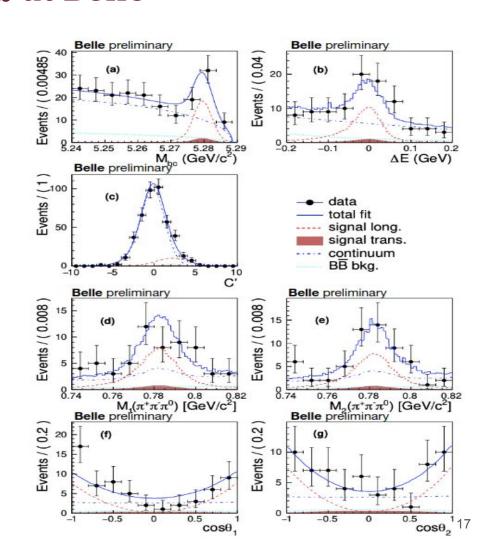


### $B^0 \rightarrow \omega \omega$ at Belle

- Rare and never observed decay
- Polarisation ( $f_L$ ) and direct-CPV parameter  $A_{CP}$  useful for  $B \rightarrow VV$  decays
- Using full Belle dataset (711 fb<sup>-1</sup>)

#### $B^0 \rightarrow \omega \omega$ at Belle

Signal extraction from 7D fit to: ΔE,
 M<sub>bc</sub>, CS, ω invariant masses &
 cosine of helicity angles of both
 the ω's.


$$\mathcal{B} = (1.53 \pm 0.29 \pm 0.17) \times 10^{-6}$$

$$A_{CP} = -0.44 \pm 0.43 \pm 0.11$$

$$f_{L} = 0.87 \pm 0.13 \pm 0.13$$

First observation of the decay (7.9 $\sigma$ ), no significant  $A_{CP}$ 

[arXiv.2401.04646], accepted by PRL

