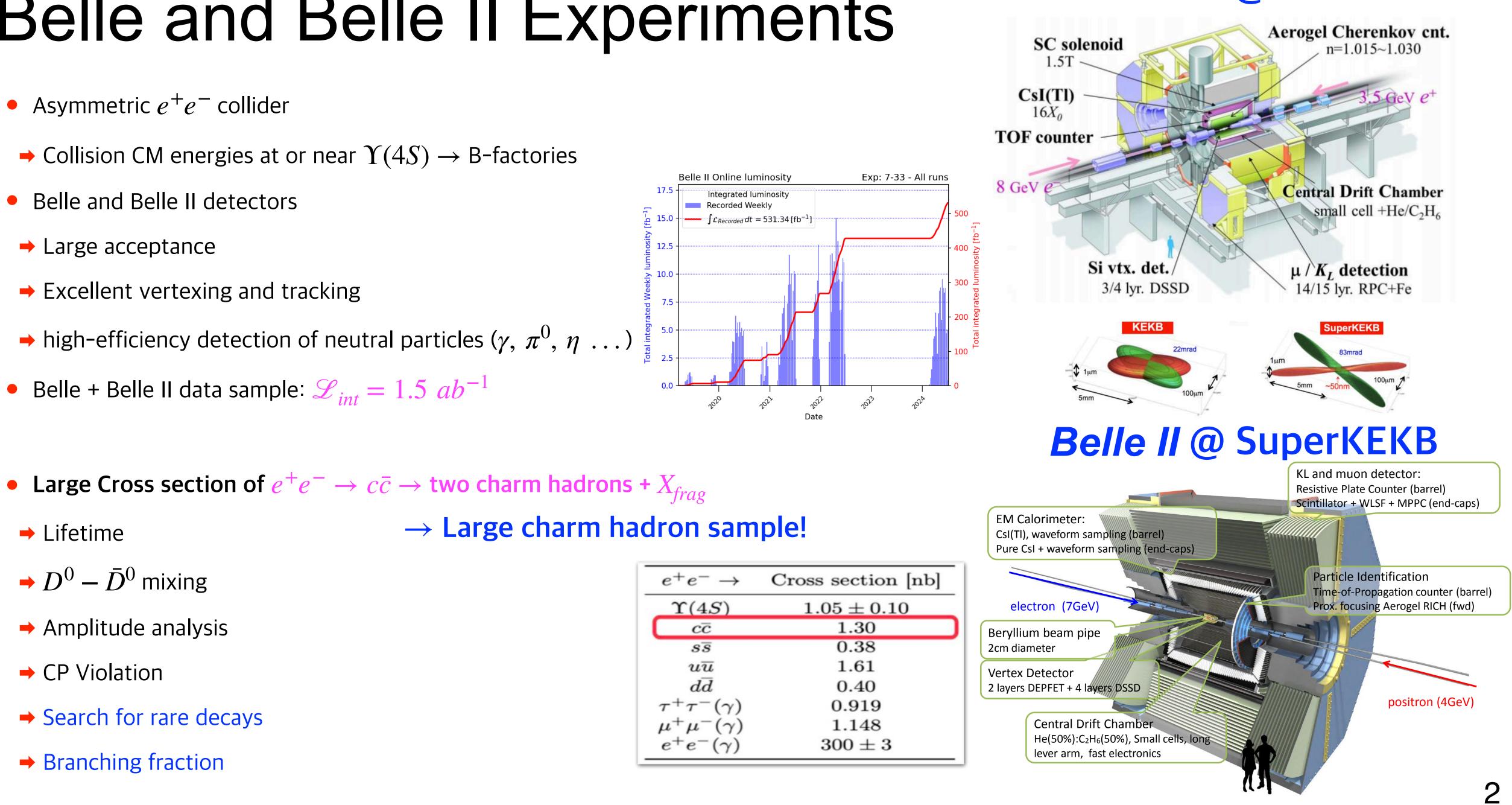
42nd International Conference on High Energy Physics Prague, Czech Republic

LIB

Rare and baryonic decays of charm hadrons at Belle and Belle II

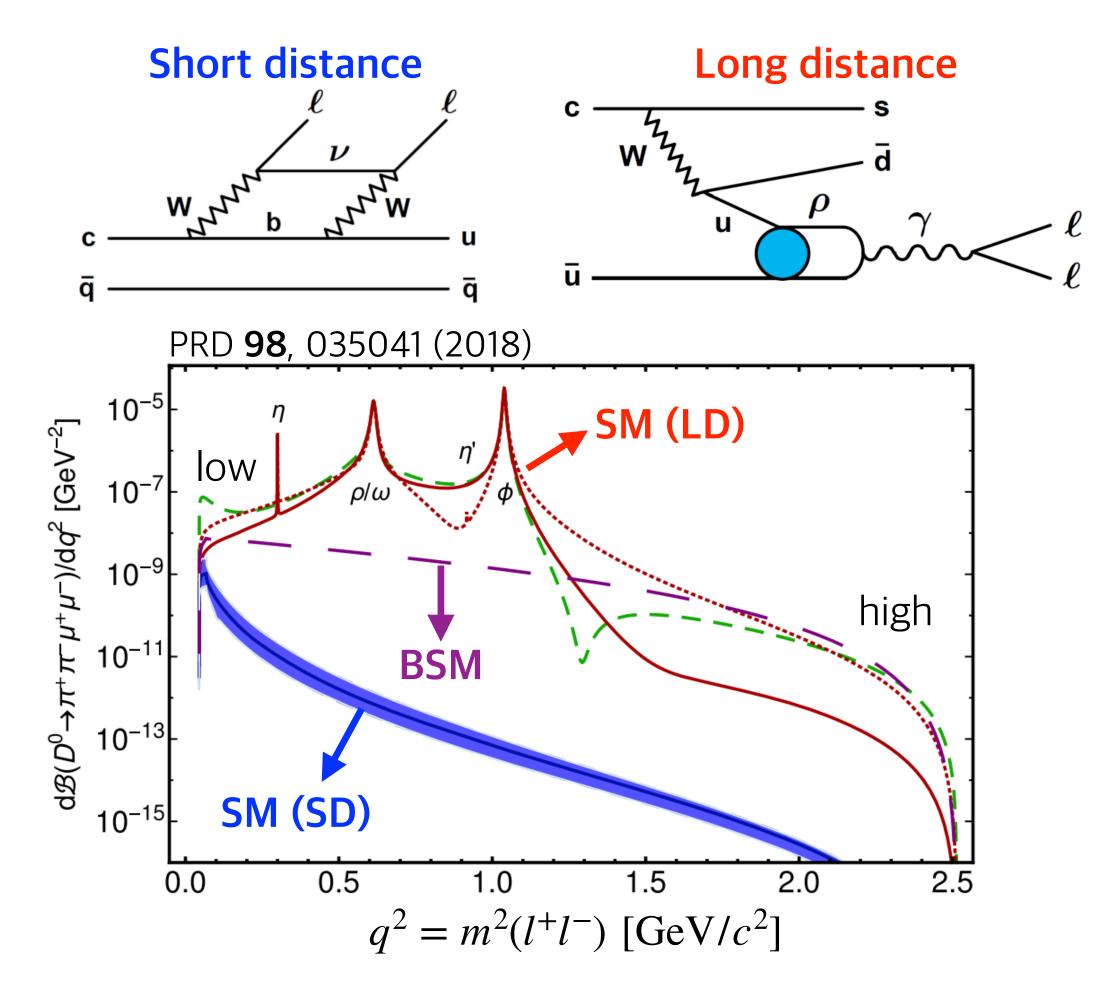

YoungJun Kim (Korea University) On behalf of Belle & Belle II Collaborations

Belle and Belle II Experiments

BELLE @ KEKB

Selected Topics

- Rare FCNC $c \rightarrow u l^+ l^-$ decays
 - $D^0 \to h^- h^{(')+} e^+ e^- (h = K, \pi)$

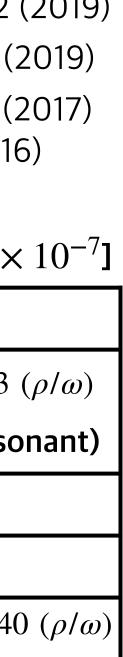

•
$$\Xi_c^0 \to \Xi^0 l^+ l^-$$

• Baryon number violation • $D^0 \rightarrow pl$ Branching fraction of Ξ⁰_c and Λ⁺_c decays
Ξ⁰_c → Ξ⁰h⁰(h⁰ = π⁰, η, η')
Λ⁺_c → pK⁰_Sπ⁰
Λ⁺_c → pK⁰_Sη, Λ⁺_c → pK⁰_SK⁰_S
Λ⁺_c → Σ⁺η^(')
Λ⁺_c → ΛK⁺, Λ⁺_c → Σ⁰K⁺

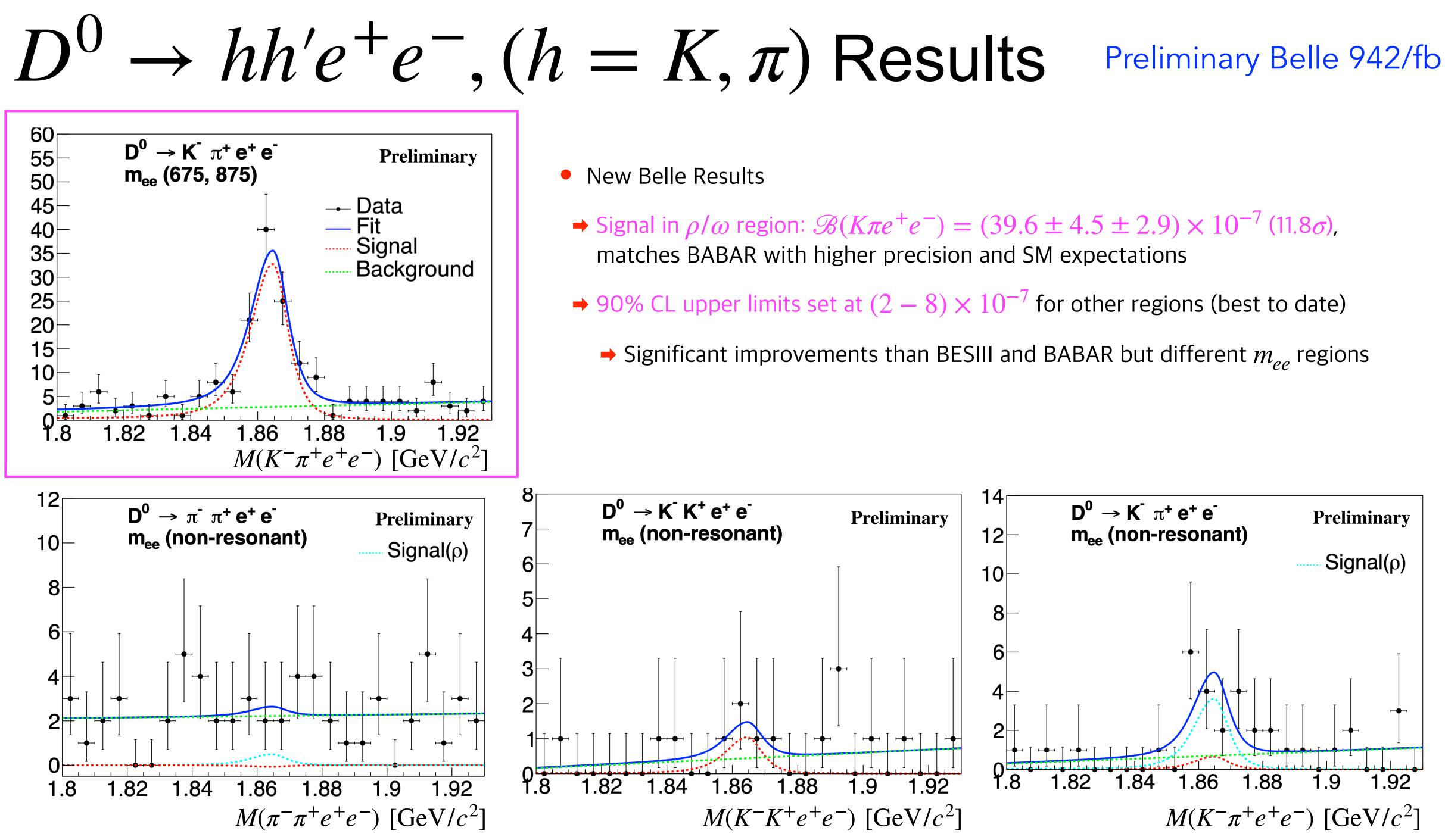
Search for $D^0 \rightarrow hh'e^+e^-$, $(h = K, \pi)$

- FCNC processes with $c \rightarrow ull$ are suppressed in SM, good probe for NP
- **SM long-distance** contributions dominate, especially near resonances.
- BSM contributions may be visible far from resonances.

BABAR: PRL **122**, 081802 (2019) BESIII: PRD **97**, 072015 (2019) LHCb: PRL **119**, 181805 (2017) PLB **517**, 558(2016)

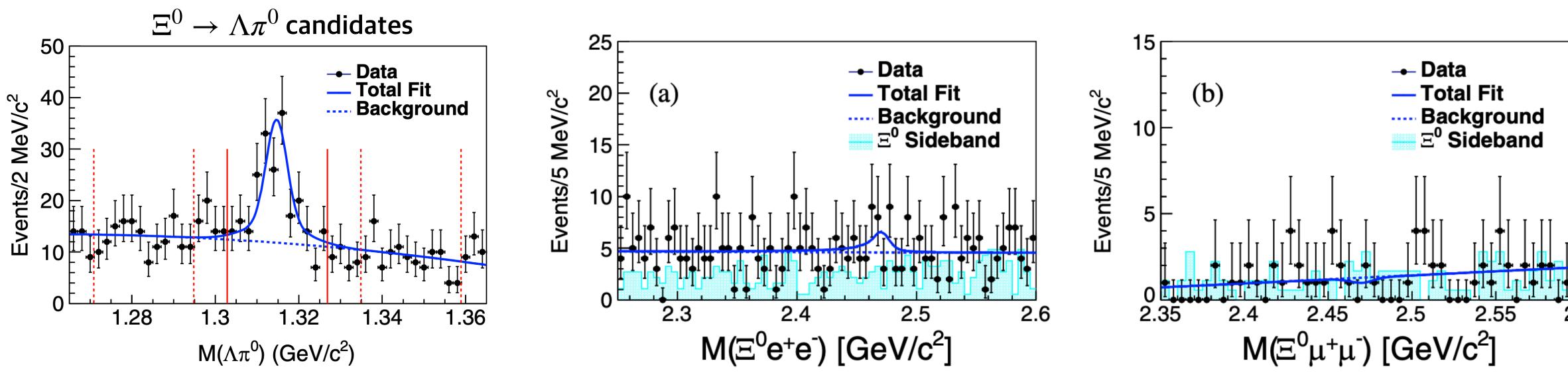

Measured BFs or ULs at 90% CL [$\times 10^{-7}$]

	KKee	ππее	Клее
BABAR			$40.0 \pm 5.0 \pm 2.3$
DADAN			< 31 (non-reso
BESIII	< 110	< 70	< 410
	ΚΚμμ	ππμμ	Κπμμ
LHCb	$1.54 \pm 0.27 \pm 0.19$	$9.64 \pm 0.48 \pm 1.10$	$4.17 \pm 0.12 \pm 0.4$


Search for signal candidates in $q^2 = m^2(e^+e^-)$ regions

 \rightarrow Near resonances \rightarrow BR measurement

 \rightarrow Far from resonances (non-resonant) \rightarrow Sensitive to NP



First Search for $\Xi_c^0 \rightarrow \Xi^0 l^+ l^-$

- No FCNC neutrino-less decays in charm baryons
- \rightarrow Only upper limits of $\Lambda_c^+ \rightarrow p l^+ l^-$ [1,2] decays were set for charmed baryons
 - Both W-exchange and FCNC processes contribute.
- \rightarrow Theoretically more complicated than $c \rightarrow ull$ in meson decays. Sensitive to Hamiltonian helicity structure through W-exchange diagrams.

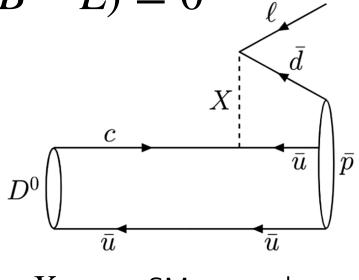
 \rightarrow If observed, the signal channels would allow to test LFU with $l = e, \mu$ [1] PRD **84**, 072006 (2011) [2] PRD **97**, 091101 (2018)

Belle 980/fb, PRD 109, 052003 (2024)

- **Belle Result**: No significant signal was observed but consistent with SM
- First set upper limits set at 90% CL:

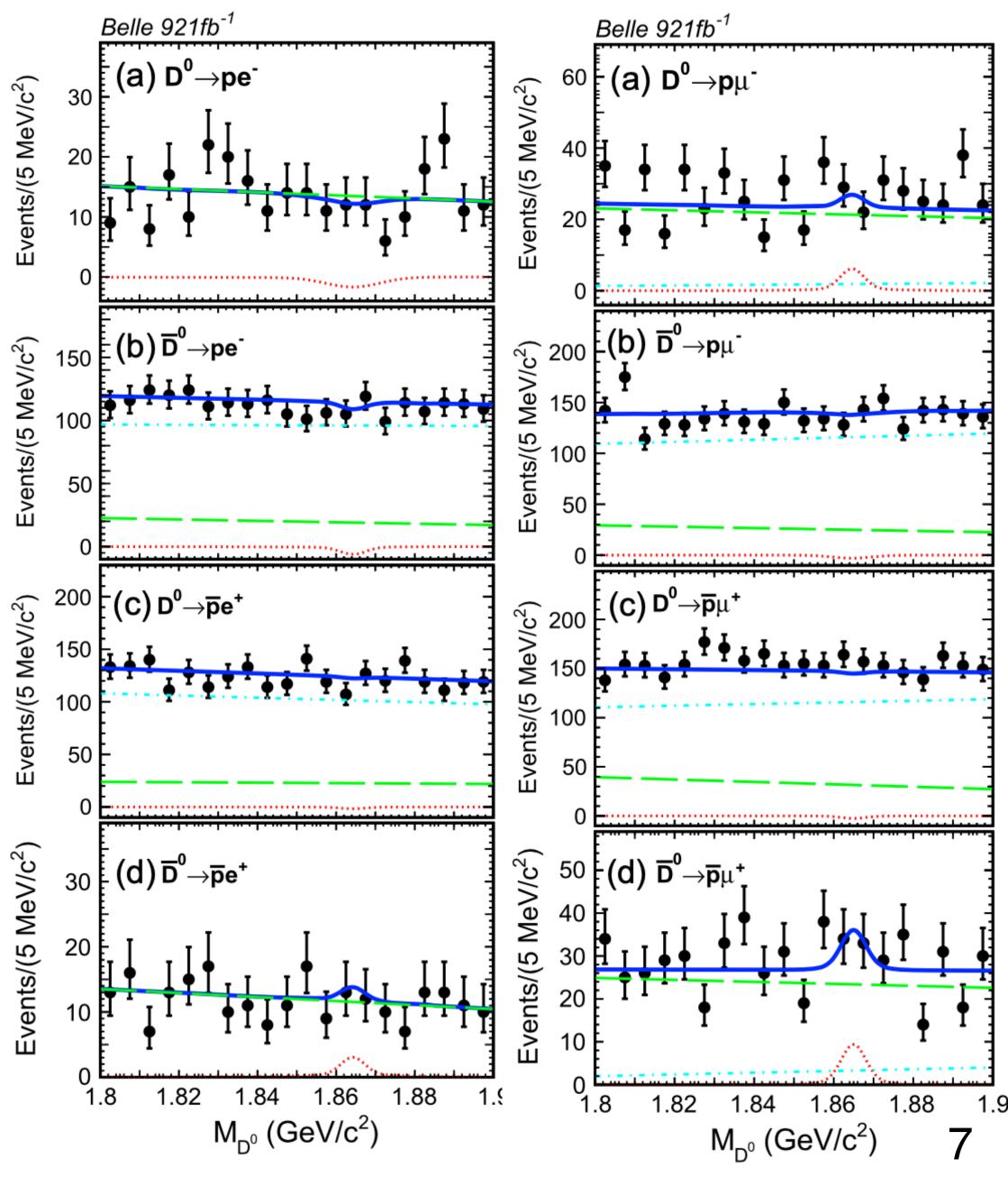
	Measured	SM predi
$\mathscr{B}(\Xi_c^0\to\Xi^0 e^+e^-)$	< 9.9 x 10 ⁻⁵	< 2.35 x
$\mathscr{B}(\Xi_c^0\to\Xi^0\mu^+\mu^-)$	< 6.5 x 10 ⁻⁵	< 2.25 x

SM prediction: PRD **103**, 013007 (2021)



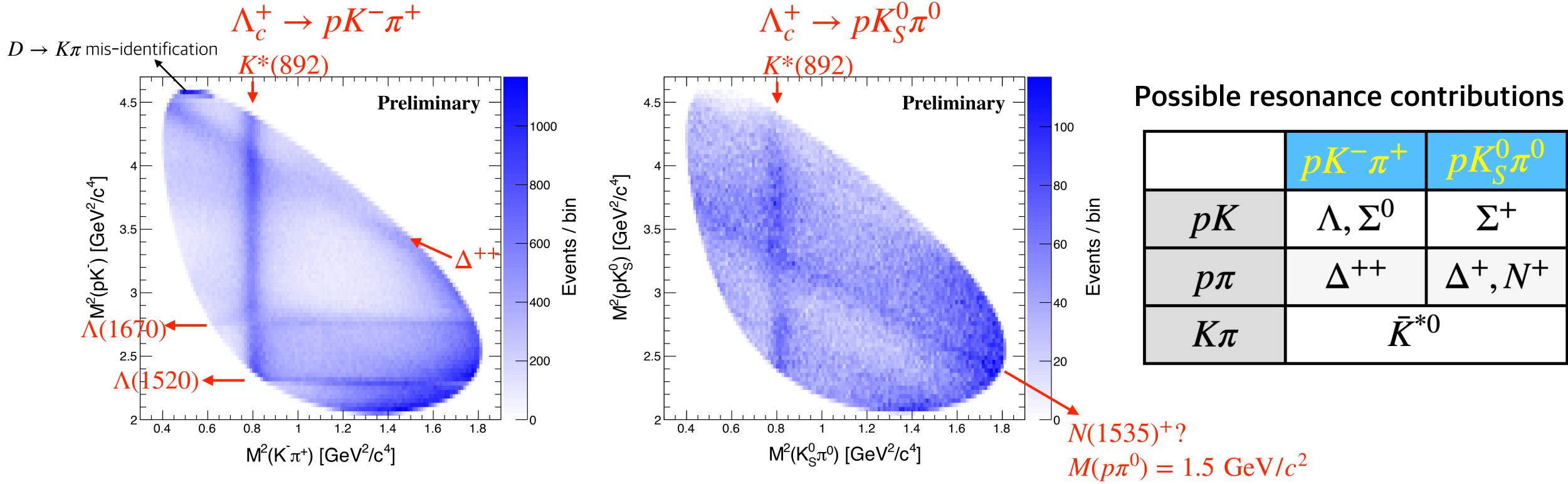
pl

- **Baryon Number Violation (BNV)** is a required condition to explain the observed matter-antimatter asymmetry in the universe
- → Several BSM models^[1-5] allow nucleon BNV with $\Delta(B L) = 0$
 - $\rightarrow B$: baryon number, L: lepton number

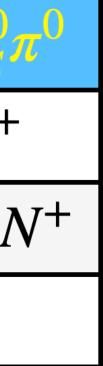

- **Belle Result**:
- Search for 8 channels: $D^0/\overline{D}^0 \rightarrow pl^-, \bar{p}l^+$ with $l = e, \mu$
- $\rightarrow D^*$ tag for D^0/\overline{D}^0 determination
- $\rightarrow D^0 \rightarrow K\pi$ as a reference mode
- No significant signal was observed
- Set upper limits at $(5 8) \times 10^{-7}$ (90% CL)
- → Most stringent upper limit for the electron channels to date
- → First measurement for the muon channels

[1] PRD, **8**, 1240 (1973) [2] PRL. **32**, 438 (1974) [3] PRD **20**, 776 (1979) [4] PLB. **91B**, 222 (1980) [5] PLB **314**, 336 (1993).

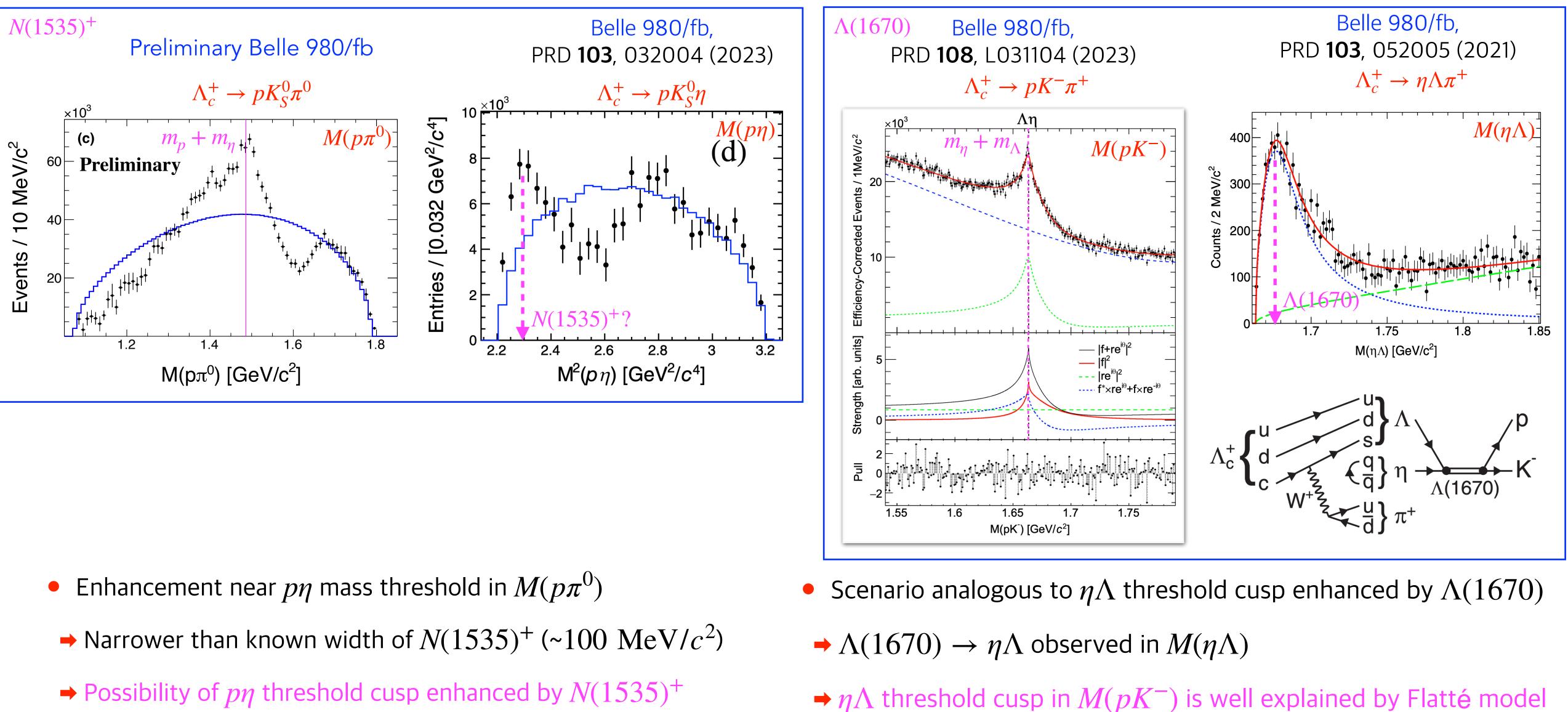
Belle 921/fb, PRD 109, L031101 (2024)



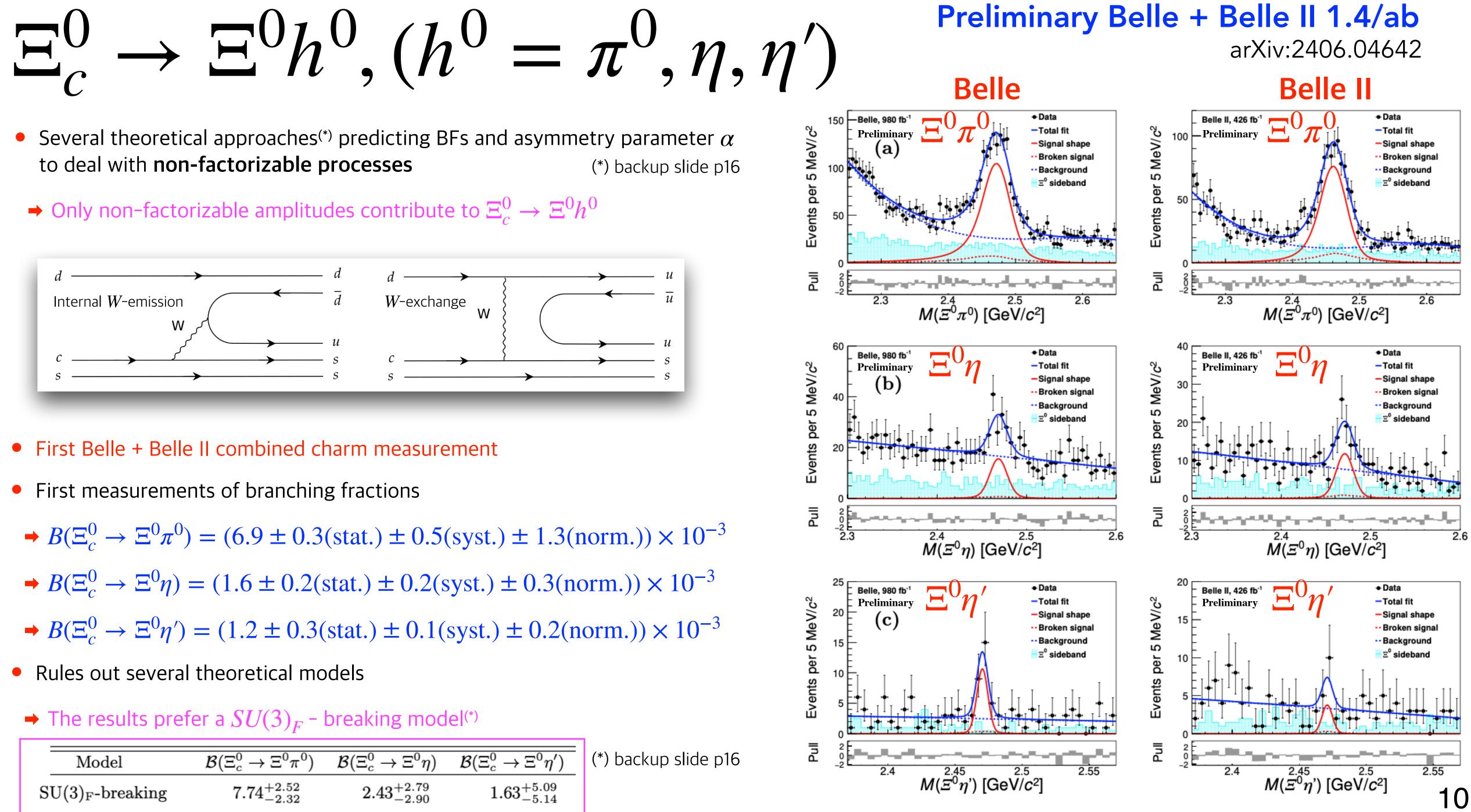
X : non-SM gauge bosons


Intermediate states in $\Lambda_c^+ \to p K_{\varsigma}^0 \pi^0$

With a large statistics, first investigation of Dalitz plots/Intermediate states


→ No distinct peaking structure of Σ^{*+} in $M(pK_{\varsigma}^{0})$ \rightarrow At 1.5 GeV/ c^2 , a clear structure is seen in $M(p\pi^0)$ (continued in next page)

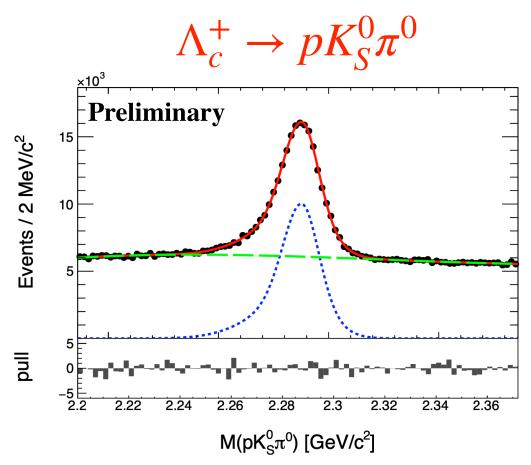
Preliminary Belle 980/fb



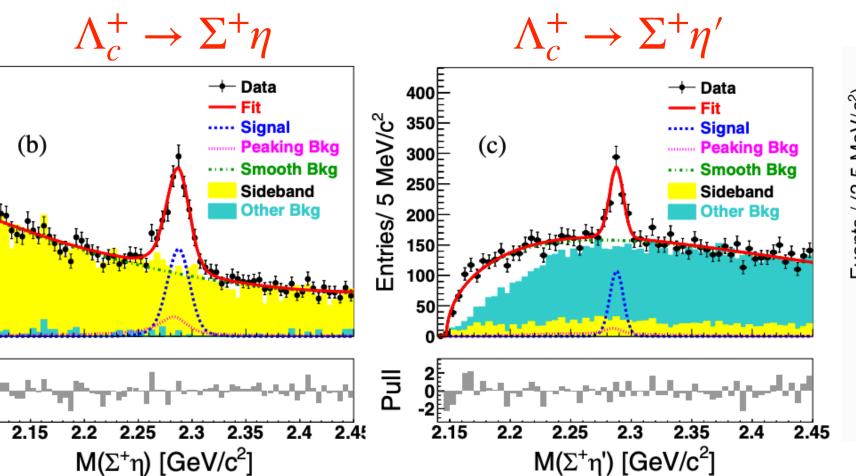
Possible $N(1535)^+$ enhanced by $p\eta$ threshold

- to deal with **non-factorizable processes**

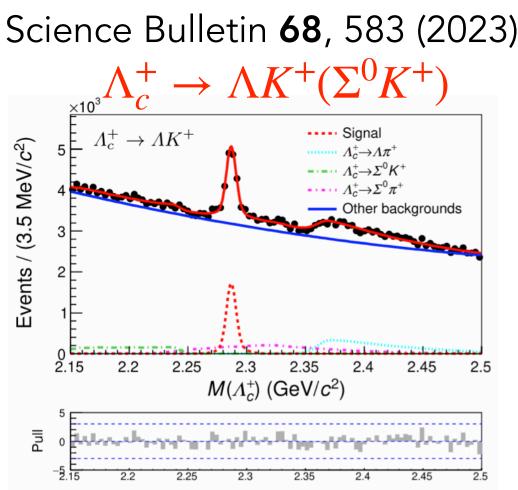
- First Belle + Belle II combined charm measurement
- First measurements of branching fractions
- Rules out several theoretical models
- \rightarrow The results prefer a $SU(3)_F$ breaking model^(*)


Model	$\mathcal{B}(\Xi_c^0 o \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta')$	(*)
${ m SU}(3)_{ m F} ext{-breaking}$	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63\substack{+5.09 \\ -5.14}$	

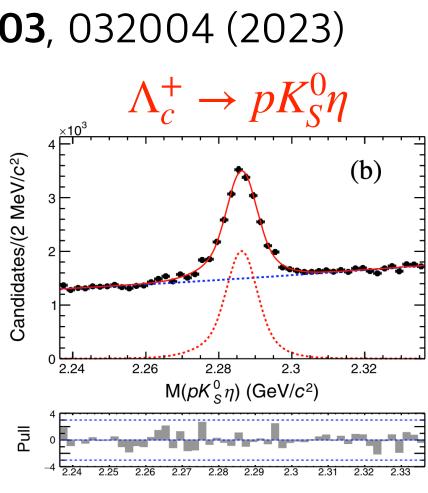
Branching fraction of Λ_c^+ decays


- First or most precise BF measurements with uncertainties in $(\pm stat. \pm syst. \pm norm.)$
- ➡ CF decays
- $B(\Lambda_c^+ \to \Sigma^+ \eta) = (3.14 \pm 0.35 \pm 0.17 \pm 0.25) \times 10^{-3}$
- $B(\Lambda_c^+ \to \Sigma^+ \eta') = (4.16 \pm 0.75 \pm 0.17 \pm 0.25) \times 10^{-3}$ •
- $B(\Lambda_c^+ \to pK_S^0\eta) = (4.35 \pm 0.10 \pm 0.20 \pm 0.22) \times 10^{-3}$ •
- $B(\Lambda_c^+ \to pK_S^0 \pi^0) = (2.12 \pm 0.01 \pm 0.05 \pm 0.10) \times 10^{-2}$ (new) •

➡ SCS decays


- $B(\Lambda_c^+ \to pK_S^0 K_S^0) = (2.35 \pm 0.12 \pm 0.07 \pm 0.04) \times 10^{-4}$
- $B(\Lambda_c^+ \to \Lambda K^+) = (6.57 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}$
- $B(\Lambda_c^+ \to \Sigma^0 K^+) = (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}$

Belle 980/fb, PRD 107, 032003 (2023)


Belle 980/fb,

Preliminary Belle 980/fb

Summary

- Belle is still producing important measurements although its data-taking finished nearly 15 years ago
 - → A large amount of data samples allows significant improvement in our understanding of SM and baryon decays.
 - \rightarrow Rare FCNC $c \rightarrow u l^+ l^-$

$$\rightarrow D^0 \rightarrow h^- h^{(\prime)+} e^+ e^- (h = K, \pi)$$

- $\Rightarrow \Xi_c^0 \rightarrow \Xi^0 l^+ l^-$
- \rightarrow Baryon number violating $D^0 \rightarrow pl$
- Branching fraction measurements
- $\Lambda_c^+ \rightarrow p K_s^0 \pi^0$ (and Intermediate structures)
- $\Lambda_c^+ \to p K_S^0 \eta, \ \Lambda_c^+ \to p K_S^0 K_S^0$
- $\Lambda_c^+ \to \Sigma^+ \eta^{(\prime)}$

•
$$\Lambda_c^+ \to \Lambda K^+, \Lambda_c^+ \to \Sigma^0 K^+$$

• First Belle + Belle II combined data analysis in charm physics

→
$$\Xi_c^0 \rightarrow \Xi^0 h^0 (h^0 = \pi^0, \eta, \eta')$$
: Branching fraction

 \rightarrow Rules out several theoretical approaches. Preferring one of theoretical models based on $SU(3)_F$ -breaking

Backup

Results for $m(e^+e^-)$ regions $(D^0 \rightarrow hh^{(')}l^+l^-)$

TABLE I. $D^0 \rightarrow h^- h^{(')+} e^+ e^-$ modes yields, significance, branching fractions, branching fraction upper limits, and the efficiencies of each m_{ee} region [×10⁻⁷]. A fitted yield and a branching fraction are not reported for $K^-K^+e^+e^-$ mode with m_{ee} in the m_{η} region since only one event is observed, and the significance is determined from the CL_s distribution.

	0	,	0		<u> </u>			
m_{ee} region	$[MeV/c^2]$	Yield	Significance	\mathcal{B}	UL @ 90% CL	Efficiency	BABAR	BES
$K^-K^+e^+e^-$								
η	520 - 560	-	$< 0.1\sigma$	-	< 2.3	3.53 ± 0.04		
$ ho^0/\omega$	> 675	2.6 ± 1.8	2.0σ	$1.2\pm0.9\pm0.1$	< 3.0	6.00 ± 0.06		<
non-resonant	$> 200^{\rm a}$	3.5 ± 3.3	1.5σ	$3.1\pm3.0\pm0.4$	< 7.7	3.19 ± 0.04		
$\pi^-\pi^+e^+e^-$								
η	520 - 560	0.6 ± 2.3	0.3σ	$0.4\pm1.4\pm0.2$	< 3.2	5.31 ± 0.05		
$ ho^0/\omega$	675 - 875	3.7 ± 4.1	0.9σ	$2.0\pm2.2\pm0.8$	< 6.1	5.69 ± 0.05		< 7
ϕ	995 - 1035	3.6 ± 3.2	1.1σ	$1.1\pm1.1\pm0.2$	< 3.1	9.41 ± 0.06		
non-resonant	> 200	-0.2 ± 4.1	$< 0.1\sigma$	$-0.2\pm3.4\pm0.9$	< 7.2	3.69 ± 0.04		
$K^-\pi^+e^+e^-$								
η	520 - 560	4.0 ± 2.7	1.6σ	$2.2\pm1.5\pm0.5$	< 5.6	5.09 ± 0.04		
$ ho^0/\omega$	675 - 875	110 ± 13	11.8σ	$39.6 \pm 4.5 \pm 2.9$	-	8.01 ± 0.06		< 7
ϕ	990 - 1034	4.6 ± 2.4	2.5σ	$1.4\pm0.8\pm0.3$	< 2.9	9.19 ± 0.06		
non-resonant	> 560	2.2 ± 4.2	0.4σ	$1.3\pm2.4\pm0.6$	< 6.5	4.89 ± 0.09	< 31*	

^a Excluding resonance regions, which is same for all three modes.

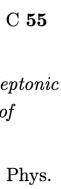
*non-resonant region excluding [100,200], [491,560], [675, 875], [902,964], [1005,1035] MeV/c²

(90% CL)

Results of $D^0 \rightarrow pl$

TABLE I. Reconstruction efficiency (ϵ), signal yield (N_S), signal significance (S), upper limit on the signal yield $(N_{p\ell}^{UL})$, and branching fraction (\mathcal{B}) at 90% confidence level for each decay mode.

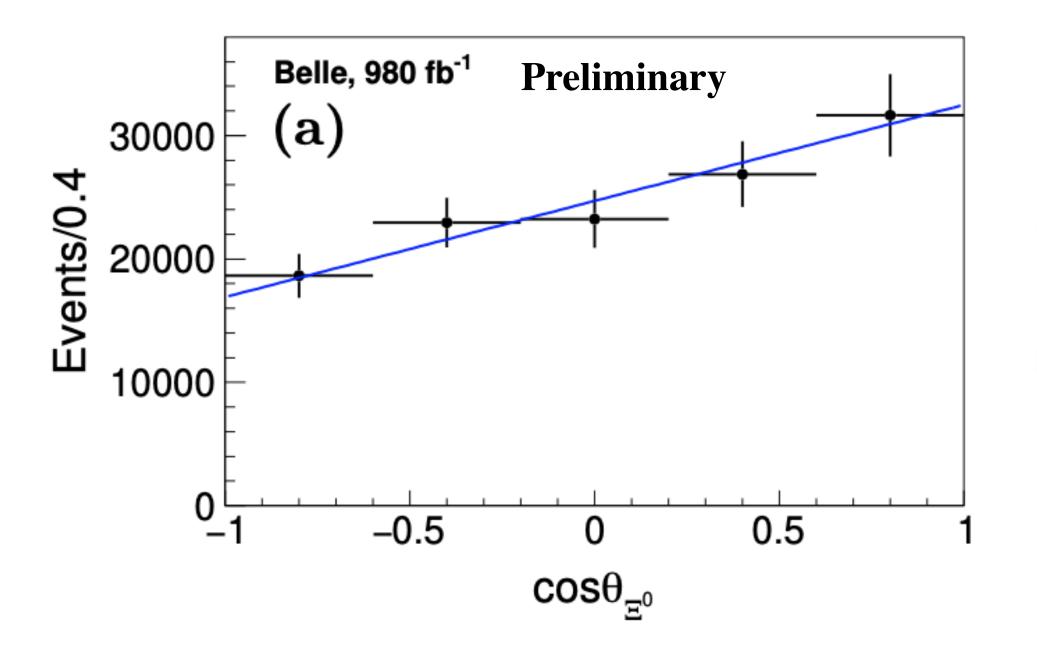
Decay mode	e (%)	N_S	$\mathcal{S}\left(\sigma ight)$	N_{pl}^{UL}	$\mathcal{B} imes 10^{-7}$
$D^0 \rightarrow pe^-$	10.2	-6.4 ± 8.5		17.5	< 5.5
$\bar{D}^0 \rightarrow pe^-$	10.2	-18.4 ± 23.0		22.0	< 6.9
$D^0 \rightarrow \bar{p}e^+$	09.7	-4.7 ± 23.0		22.0	< 7.2
$\bar{D}^0 \rightarrow \bar{p} e^+$	09.6	7.1 ± 9.0	0.6	23.0	< 7.6
$D^0 \rightarrow p\mu^-$	10.7	11.0 ± 23.0	0.9	17.1	< 5.1
$\bar{D}^0 \rightarrow p \mu^-$	10.7	-10.8 ± 27.0		21.8	< 6.5
$D^0 ightarrow ar{p} \mu^+$	10.5	-4.5 ± 14.0		21.1	< 6.3
$\bar{D}^0 ightarrow \bar{p} \mu^+$	10.4	16.7 ± 8.8	1.6	21.4	< 6.5

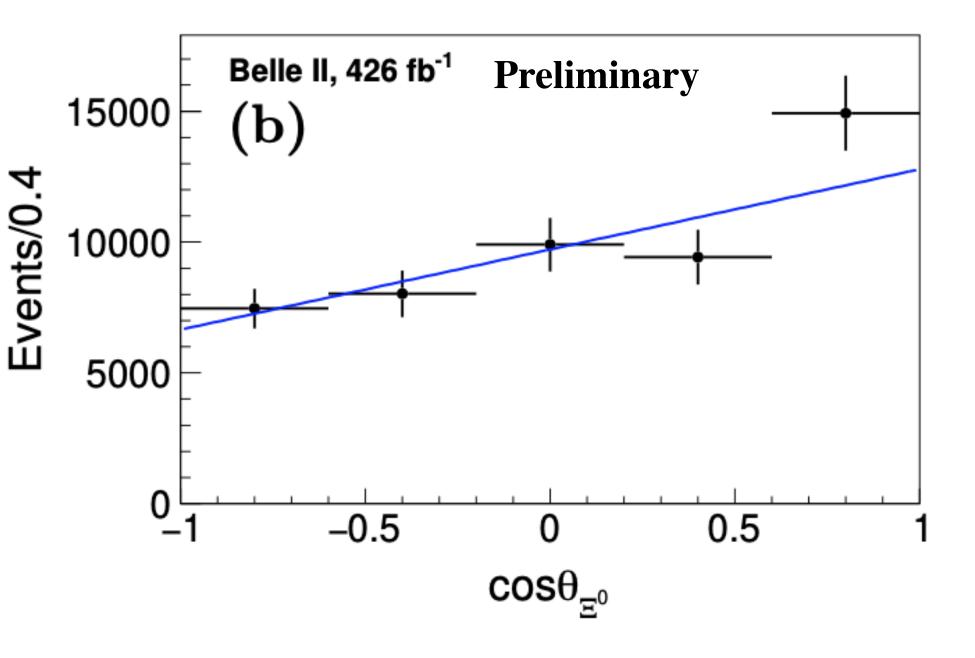


$\rightarrow \Xi^0 h^0$ theoretical predictions

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_c^0 \to \Xi^0 h^0$ decays. Branching fractions are given in units of 10^{-3} .

=			. 0 . 0 . 0	. 0 . 0		
-	Reference	Model	$\mathcal{B}(\Xi_c^0 o \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
_	Körner, Krämer [5]	Quark	0.5	3.2	11.6	0.92
	Ivanov et al. [6]	$\mathbf{Q}\mathbf{u}\mathbf{a}\mathbf{r}\mathbf{k}$	0.5	3.7	4.1	0.94
	Xu, Kamal [7]	Pole	7.7	-	-	0.92
	Cheng, Tseng [8]	Pole	3.8	-	-	-0.78
	Żenczykowski [9]	Pole	6.9	1.0	9.0	0.21
	Zou <i>et al.</i> [10]	Pole	18.2	26.7	-	-0.77
	Sharma, Verma [11]	\mathbf{CA}	-	-	-	-0.8
	Cheng, Tseng [8]	\mathbf{CA}	17.1	-	-	0.54
	Geng et al. $[12]$	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6\substack{+11.0 \\ -6.3}$	-
	Geng et al. $[13]$	${ m SU}(3)_{ m F}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
	Zhao $et al. [14]$	${ m SU}(3)_{ m F}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
	Huang et al. $[15]$	${ m SU}(3)_{ m F}$	2.56 ± 0.93	-	-	-0.23 ± 0.60
	Hsiao et al. [16]	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
	Hsiao $et al. [16]$	${ m SU}(3)_{ m F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
	Zhong et al. $[17]$	${ m SU}(3)_{ m F}$	$1.13\substack{+0.59\\-0.49}$	1.56 ± 1.92	$0.683\substack{+3.272\\-3.268}$	$0.50\substack{+0.37 \\ -0.35}$
Best fit →	Zhong $et al. [17]$	${ m SU}(3)_{ m F} ext{-breaking}$	$7.74\substack{+2.52\\-2.32}$	$2.43\substack{+2.79\\-2.90}$	$1.63\substack{+5.09 \\ -5.14}$	$-0.29\substack{+0.20\\-0.17}$
	Xing <i>et al.</i> [18]	${ m SU}(3)_{ m F}$	1.30 ± 0.51	-	-	-0.28 ± 0.18
	Geng et al. [19]	${ m SU}(3)_{ m F}$	7.10 ± 0.41	2.94 ± 0.97	5.66 ± 0.93	-0.49 ± 0.09
	Zhong et al. [20]	${ m Diagrammatic-SU(3)_F}$	7.45 ± 0.64	2.87 ± 0.66	5.31 ± 1.33	-0.51 ± 0.08
	Zhong et al. [20]	Irreducible- $SU(3)_F$	7.72 ± 0.65	2.28 ± 0.53	5.66 ± 1.62	-0.51 ± 0.09


- [5] J. G. Körner and M. Krämer, Exclusive non-leptonic charm baryon decays, Z. Phys. C 55 (1992) 659.
- [6] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A. G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three-quark model: Evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998) 5632.
- [7] Q. P. Xu and A. N. Kamal, *Cabibbo-favored nonleptonic decays of charmed baryons*, Phys. Rev. D 46 (1992) 270.
- [8] H. Y. Cheng and B. Tseng, Cabibbo-allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48 (1993) 4188.
- [9] P. Zenczykowski, Nonleptonic charmed-baryon decays: Symmetry properties of parity-violating amplitudes, Phys. Rev. D 50 (1994) 5787.
- [10] J. Q. Zou, F. R. Xu, G. B. Meng, and H. Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011.
- [11] K. K. Sharma and R. C. Verma, A study of weak mesonic decays of Λ_c and Ξ_C baryons on the basis of HQET results, Eur. Phys. J. C 7 (1999) 217.
- [12] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006.
- [13] C. Q. Geng, C. W. Liu, and T. H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B **794** (2019) 19.
- [14] H. J. Zhao, Y. L. Wang, Y. K. Hsiao, and Y. Yu, A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry, JHEP 02 (2020) 165.
- [15] F. Huang, Z. P. Xing, and X. Z. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP **03** (2022) 143.
- [16] Y. K. Hsiao, Y. L. Wang, and H. J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 35.
- [17] H. Zhong, F. Xu, Q. Wen, and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP **02** (2023) 235.
- [18] Z. P. Xing, et al., Global analysis of measured and unmeasured hadronic two-body weak decays of antitriplet charmed baryons, Phys. Rev. D 108 (2023) 053004.
- [19] C. Q. Geng, et al. Complete determination of $SU(3)_F$ amplitudes and strong phase in $\Lambda_c^+ \to \Xi^0 K^+$, Phys. Rev. D **109** (2024) L071302.
- [20] H. Zhong, F. Xu, and H. Y. Cheng Analysis of Hadronic Weak Decays of Charmed Baryons in the Topological Diagrammatic Approach, arXiv:2404.01350.



 $\rightarrow \Xi^0 \pi^0$ asymmetry parameter Ξ^+

• $\Xi_c^+ \to \Xi^0 \pi^0$ asymmetry parameter: $\Rightarrow \alpha(\Xi_c^+ \to \Xi^0 \pi^0) = -0.90 \pm 0.15 (\text{stat.}) \pm 0.23 (\text{syst.})$ $\rightarrow \frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 \pi^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$

 $\Lambda_c^+ \to \Lambda K^+ \text{ and } \Lambda_c^+ \to \Sigma K^+$

• Direct CPV via raw asymmetry measurements in SCS decays:

$$A_{raw}(\Lambda_c^+ \to \Lambda K^+) = \frac{N(\Lambda_c^+ \to \Lambda K^+) - N(\bar{\Lambda}_c^- \to \bar{\Lambda} K^-)}{N(\Lambda_c^+ \to \Lambda K^+) + N(\bar{\Lambda}_c^- \to \bar{\Lambda} K^-)}$$

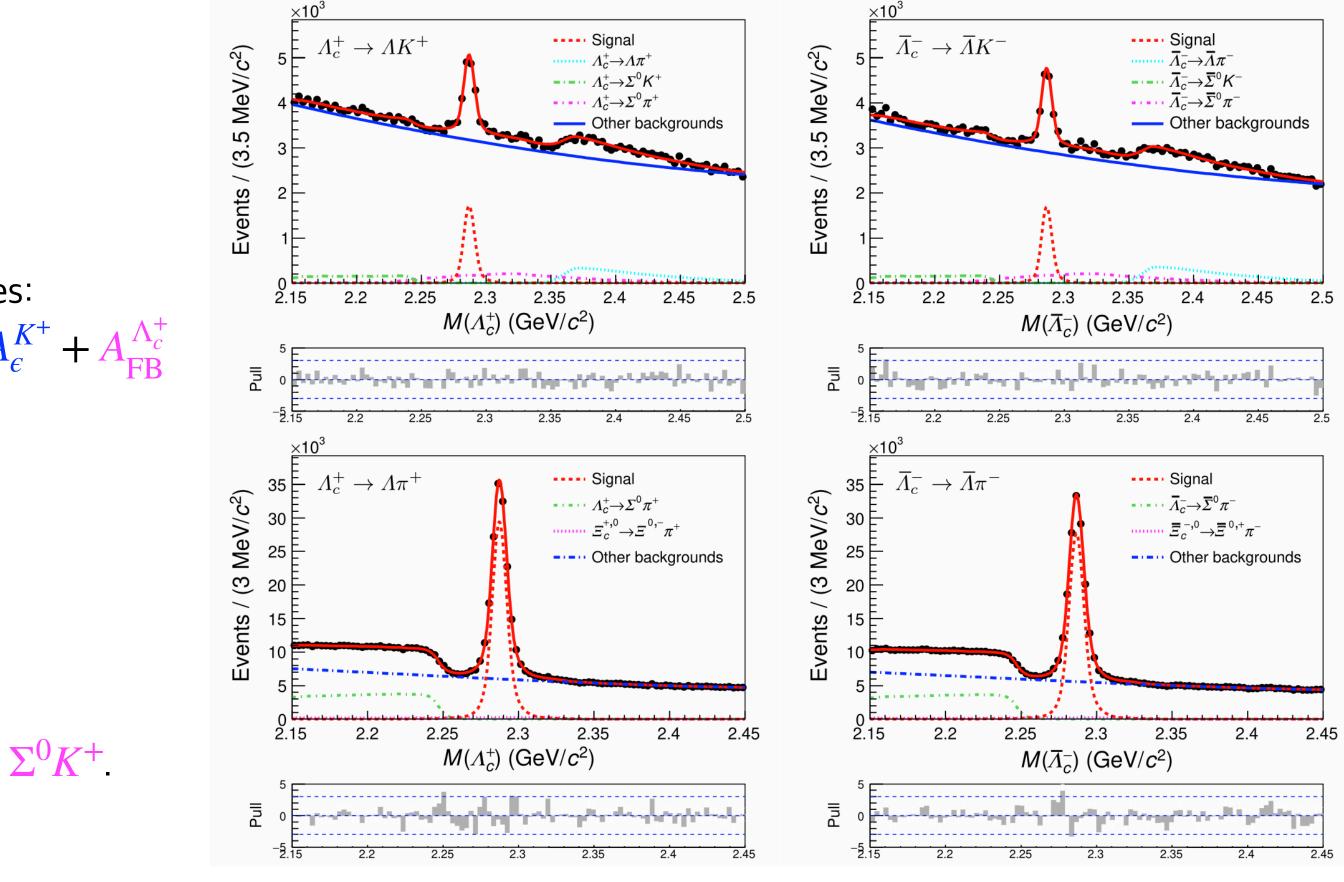
 \rightarrow The raw asymmetry of $\Lambda_c^+ \rightarrow \Lambda K^+$ includes several asymmetry sources: $A_{raw}(\Lambda_c^+ \to \Lambda K^+) = A_{CP}^{dir}(\Lambda_c^+ \to \Lambda K^+) + A_{CP}^{dir}(\Lambda \to p\pi^-) + A_{\epsilon}^{\Lambda} + A_{\epsilon}^{K^+} + A_{FR}^{\Lambda_c^+}$ Detection efficiency correction, between K^+ , K^-

 \rightarrow Using CF mode $\Lambda_c^+ \rightarrow \Lambda \pi^+$ as a reference mode, common asymmetry sources are canceled out.

$$\Delta A_{raw} = A_{raw}^{corr}(\Lambda_c^+ \to \Lambda K^+) - A_{raw}^{corr}(\Lambda_c^+ \to \Lambda \pi^+)$$

$$= A_{raw}^{dir}(\Lambda_c^+ \to \Lambda K^+) - A_{raw}^{dir}(\Lambda_c^+ \to \Lambda \pi^+) = A_{raw}^{dir}(\Lambda_c^+ \to \Lambda K^+)$$

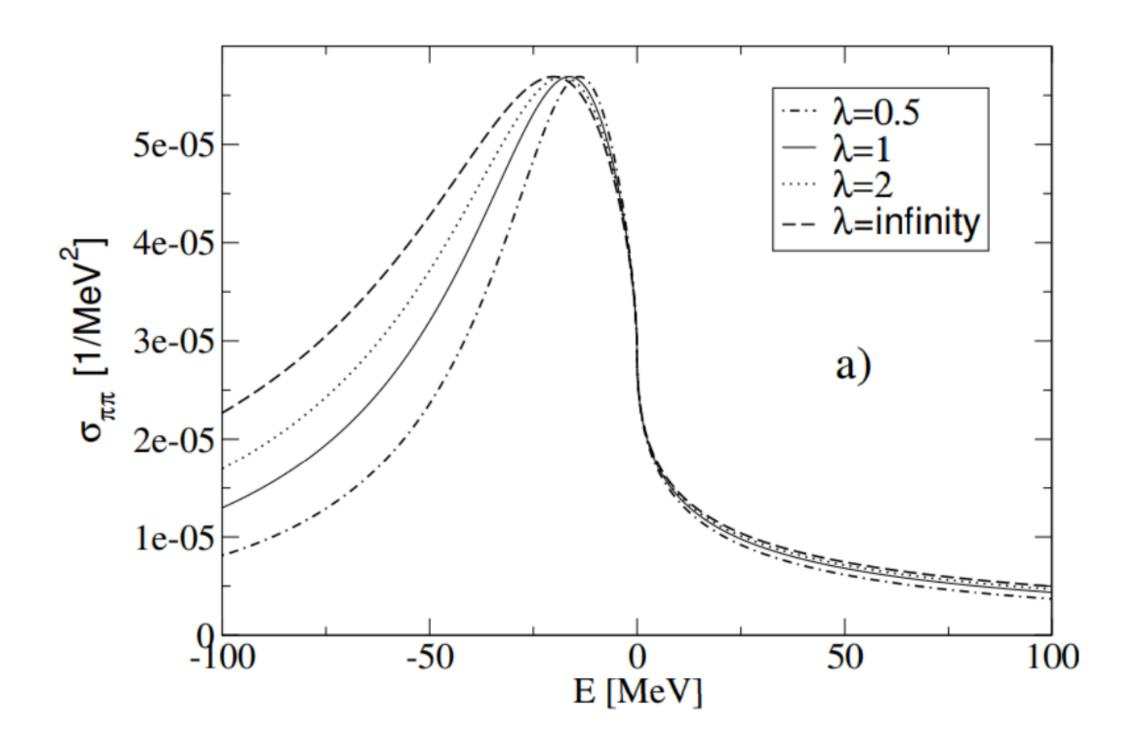
- → Similarly, $\Lambda_c^+ \to \Sigma^0 \pi^+$ mode was used as a reference mode for $\Lambda_c^+ \to \Sigma^0 K^+$.
- First A_{CP}^{dir} for SCS two-body decays of charmed baryons.


•
$$A_{CP}^{dir}(\Lambda_c^+ \to \Lambda K^+) = (2.1 \pm 2.6 \pm 0.1) \times 10^{-2}$$

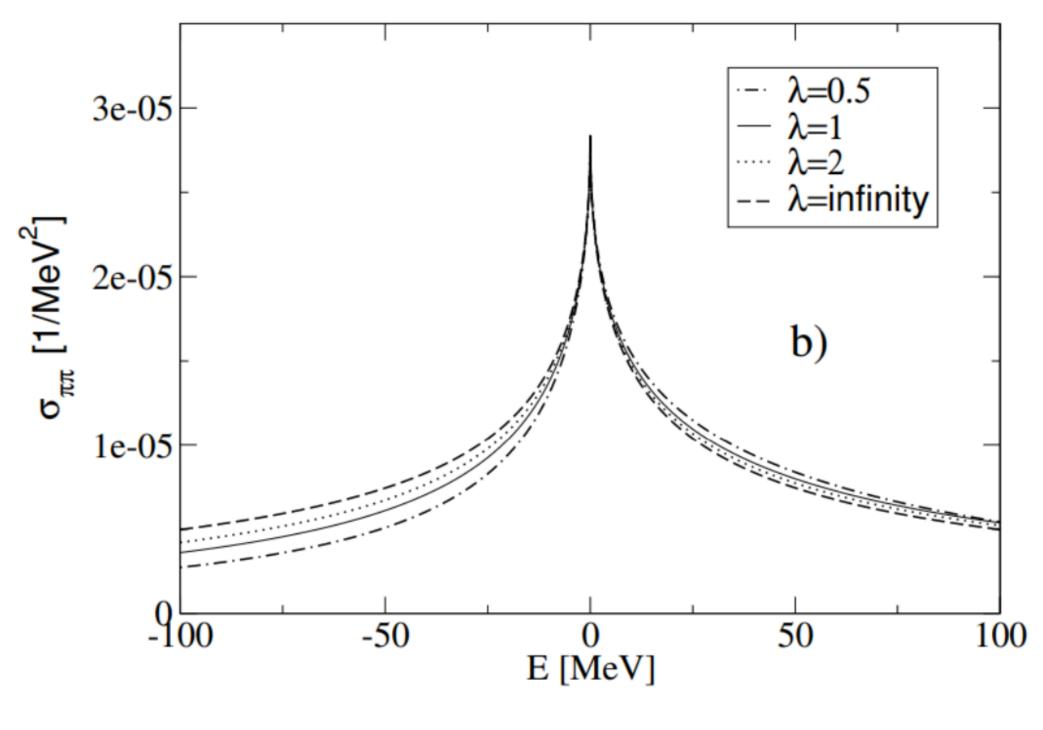
- $A_{CP}^{dir}(\Lambda_c^+ \to \Sigma^0 K^+) = (2.5 \pm 5.4 \pm 0.4) \times 10^{-2}$
- No significant direct CP violation was observed.

A COTT

Belle 980/fb, Science Bulletin 68 (2023) 583



- Branching fractions were measured as well
- $B(\Lambda_c^+ \to \Lambda K^+) = (6.57 \pm 0.17 \pm 0.11 \pm 0.35) \times 10^{-4}$
- $B(\Lambda_c^+ \to \Sigma^0 K^+) = (3.58 \pm 0.19 \pm 0.06 \pm 0.19) \times 10^{-4}$



Flatté model

$$f_{\rm el} = -\frac{1}{2q} \frac{\Gamma_P}{E - E_{\rm BW} + i\frac{\Gamma_P}{2} + i\bar{g}_K\frac{k}{2}}$$

where, $k = \sqrt{m_K}(\sqrt{s} - 2m_k)$ *k is imaginary when $m < 2m_K$

